Inviscid Limit of the Navier-Stokes-Korteweg Equations under the Weak Kolmogorov Hypothesis in $\mathbb{R}^3$

Inviscid Limit of the Navier-Stokes-Korteweg Equations under the Weak Kolmogorov Hypothesis in $\mathbb{R}^3$

Year:    2024

Author:    Dehua Wang, Cheng Yu

Communications in Mathematical Analysis and Applications, Vol. 3 (2024), Iss. 3 : pp. 369–383

Abstract

This paper establishes the weak convergence of global solutions for the Navier-Stokes-Korteweg equations under the weak Kolmogorov hypothesis in the three-dimensional periodic domain. Specifically, the weak Kolmogorov hypothesis offers uniform bounds for weak solutions, ensuring their weak stability under vanishing viscosity. With compactness arguments, we show that the solutions of the Navier-Stokes-Korteweg equations converge to a global weak solution of the Euler-Korteweg equations.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cmaa.2024-0015

Communications in Mathematical Analysis and Applications, Vol. 3 (2024), Iss. 3 : pp. 369–383

Published online:    2024-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    15

Keywords:    Inviscid limit Kolmogorov hypothesis Navier-Stokes-Korteweg equations Euler-Korteweg equations compactness.

Author Details

Dehua Wang

Cheng Yu