Nonlinear Mixed Lie Triple Derivations by Local Actions on Von Neumann Algebras

Nonlinear Mixed Lie Triple Derivations by Local Actions on Von Neumann Algebras

Year:    2024

Author:    Meilian Gao, Xingpeng Zhao

Journal of Mathematical Study, Vol. 57 (2024), Iss. 2 : pp. 178–193

Abstract

As a generalization of global mappings, we study a class of non-global mappings in this note. Let $\mathcal{A} ⊆ B(\mathcal{H})$ be a von Neumann algebra without abelian direct summands. We prove that if a map $δ:\mathcal{A}→\mathcal{A}$ satisfies $δ([[A,B]_∗,C]) = [[δ(A),B]_∗,C]+ [[A,δ(B)]_∗,C]+[[A,B]_∗,δ(C)]$ for any $A,B,C ∈ \mathcal{A}$ with $A^∗B^∗C =0,$ then $δ$ is an additive ∗-derivation. As applications, our results are applied to factor von Neumann algebras, standard operator algebras, prime ∗-algebras and so on.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jms.v57n2.24.04

Journal of Mathematical Study, Vol. 57 (2024), Iss. 2 : pp. 178–193

Published online:    2024-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    16

Keywords:    Nonlinear mixed Lie triple derivation ∗-derivation von Neumann algebra.

Author Details

Meilian Gao

Xingpeng Zhao