Journals
Resources
About Us
Open Access

Nonlinear Mixed Lie Triple Derivations by Local Actions on Von Neumann Algebras

Nonlinear Mixed Lie Triple Derivations by Local Actions on Von Neumann Algebras

Year:    2024

Author:    Meilian Gao, Xingpeng Zhao

Journal of Mathematical Study, Vol. 57 (2024), Iss. 2 : pp. 178–193

Abstract

As a generalization of global mappings, we study a class of non-global mappings in this note. Let $\mathcal{A} ⊆ B(\mathcal{H})$ be a von Neumann algebra without abelian direct summands. We prove that if a map $δ:\mathcal{A}→\mathcal{A}$ satisfies $δ([[A,B]_∗,C]) = [[δ(A),B]_∗,C]+ [[A,δ(B)]_∗,C]+[[A,B]_∗,δ(C)]$ for any $A,B,C ∈ \mathcal{A}$ with $A^∗B^∗C =0,$ then $δ$ is an additive ∗-derivation. As applications, our results are applied to factor von Neumann algebras, standard operator algebras, prime ∗-algebras and so on.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jms.v57n2.24.04

Journal of Mathematical Study, Vol. 57 (2024), Iss. 2 : pp. 178–193

Published online:    2024-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    16

Keywords:    Nonlinear mixed Lie triple derivation ∗-derivation von Neumann algebra.

Author Details

Meilian Gao

Xingpeng Zhao