Upper Bound of the Number of Zeros for Abelian Integrals in a Kind of Quadratic Reversible Centers of Genus One

Year:    2024

Author:    Qiuli Yu, Houmei He, Yuangen Z han, Xiaochun Hong

Journal of Nonlinear Modeling and Analysis, Vol. 6 (2024), Iss. 1 : pp. 218–227

Abstract

By using the methods of Picard-Fuchs equation and Riccati equation, we study the upper bound of the number of zeros for Abelian integrals in a kind of quadratic reversible centers of genus one under polynomial perturbations of degree $n.$ We obtain that the upper bound is $7[(n − 3)/2] + 5$ when $n ≥ 5, 8$ when $n = 4, 5$ when $n = 3, 4$ when $n = 2,$ and $0$ when $n = 1$ or $n = 0,$ which linearly depends on $n.$

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.12150/jnma.2024.218

Journal of Nonlinear Modeling and Analysis, Vol. 6 (2024), Iss. 1 : pp. 218–227

Published online:    2024-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    10

Keywords:    Abelian integral quadratic reversible center weakened Hilbert’s 16th problem Picard-Fuchs equation Riccati equation.

Author Details

Qiuli Yu

Houmei He

Yuangen Z han

Xiaochun Hong