Year: 2025
Author: Qiming Wang, Zhaojie Zhou
Journal of Computational Mathematics, Vol. 43 (2025), Iss. 1 : pp. 174–202
Abstract
In this paper, a robust residual-based a posteriori estimate is discussed for the Streamline Upwind/Petrov Galerkin (SUPG) virtual element method (VEM) discretization of convection dominated diffusion equation. A global upper bound and a local lower bound for the a posteriori error estimates are derived in the natural SUPG norm, where the global upper estimate relies on some hypotheses about the interpolation errors and SUPG virtual element discretization errors. Based on the Dörfler’s marking strategy, adaptive VEM algorithm drived by the error estimators is used to solve the problem on general polygonal meshes. Numerical experiments show the robustness of the a posteriori error estimates.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/jcm.2309-m2021-0366
Journal of Computational Mathematics, Vol. 43 (2025), Iss. 1 : pp. 174–202
Published online: 2025-01
AMS Subject Headings:
Copyright: COPYRIGHT: © Global Science Press
Pages: 29
Keywords: A posteriori estimate SUPG virtual element method Convection dominated diffusion equation Adaptive VEM algorithm.