Loading [MathJax]/jax/output/HTML-CSS/config.js
Journals
Resources
About Us
Open Access
Go to previous page

Heintze-Karcher Inequality for Anisotropic Free Boundary Hypersurfaces in Convex Domains

Heintze-Karcher Inequality for Anisotropic Free Boundary Hypersurfaces in Convex Domains

Year:    2024

Author:    Xiaohan Jia, Guofang Wang, Chao Xia, Xuwen Zhang

Journal of Mathematical Study, Vol. 57 (2024), Iss. 3 : pp. 243–258

Abstract

In this paper, we prove an optimal Heintze-Karcher-type inequality for anisotropic free boundary hypersurfaces in general convex domains. The equality is achieved for anisotropic free boundary Wulff shapes in a convex cone. As applications, we prove Alexandrov-type theorems in convex cones.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jms.v57n3.24.01

Journal of Mathematical Study, Vol. 57 (2024), Iss. 3 : pp. 243–258

Published online:    2024-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    16

Keywords:    Heintze-Karcher’s inequality constant mean curvature free boundary surface capillary surface convex cone.

Author Details

Xiaohan Jia Email

Guofang Wang Email

Chao Xia Email

Xuwen Zhang Email

  1. Willmore‐type inequality in unbounded convex sets

    Jia, Xiaohan

    Wang, Guofang

    Xia, Chao

    Zhang, Xuwen

    Journal of the London Mathematical Society, Vol. 111 (2025), Iss. 3

    https://doi.org/10.1112/jlms.70105 [Citations: 0]