Journals
Resources
About Us
Open Access

Heintze-Karcher Inequality for Anisotropic Free Boundary Hypersurfaces in Convex Domains

Heintze-Karcher Inequality for Anisotropic Free Boundary Hypersurfaces in Convex Domains

Year:    2024

Author:    Xiaohan Jia, Guofang Wang, Chao Xia, Xuwen Zhang

Journal of Mathematical Study, Vol. 57 (2024), Iss. 3 : pp. 243–258

Abstract

In this paper, we prove an optimal Heintze-Karcher-type inequality for anisotropic free boundary hypersurfaces in general convex domains. The equality is achieved for anisotropic free boundary Wulff shapes in a convex cone. As applications, we prove Alexandrov-type theorems in convex cones.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jms.v57n3.24.01

Journal of Mathematical Study, Vol. 57 (2024), Iss. 3 : pp. 243–258

Published online:    2024-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    16

Keywords:    Heintze-Karcher’s inequality constant mean curvature free boundary surface capillary surface convex cone.

Author Details

Xiaohan Jia

Guofang Wang

Chao Xia

Xuwen Zhang

  1. A Heintze-Karcher-type inequality for capillary hypersurfaces in a hyperbolic half-space

    Hu, Yingxiang | Wei, Yong | Xia, Chao | Zhou, Tailong

    Journal of Functional Analysis, Vol. 289 (2025), Iss. 6 P.110970

    https://doi.org/10.1016/j.jfa.2025.110970 [Citations: 0]
  2. Willmore‐type inequality in unbounded convex sets

    Jia, Xiaohan | Wang, Guofang | Xia, Chao | Zhang, Xuwen

    Journal of the London Mathematical Society, Vol. 111 (2025), Iss. 3

    https://doi.org/10.1112/jlms.70105 [Citations: 0]