Multiple Vortices for the Shallow Water Equation in Two Dimensions

Multiple Vortices for the Shallow Water Equation in Two Dimensions

Year:    2019

Author:    Daomin Cao, Zhongyuan Liu

Annals of Applied Mathematics, Vol. 35 (2019), Iss. 3 : pp. 221–249

Abstract

In this paper, we construct stationary classical solutions of the shallow water equation with vanishing Froude number $Fr$ in the so-called lake model. To this end we need to study solutions to the following semilinear elliptic problem

image.png

for small $ε$ > 0, where $p$ > 1, div($\frac{∇q}{b}$) = 0 and $Ω$ ⊂ $\mathbb{R}$is a smooth bounded domain.
We show that if $\frac{q^2}{b}$ has $m$ strictly local minimum (maximum) points $\widetilde{z}_i$, $i$ = 1, · · · , $m$, then there is a stationary classical solution approximating stationary $m$ points vortex solution of shallow water equations with vorticity $\sum\limits_{i=1}^m$ $\frac{2πq(\widetilde{z}_i)}{b(\widetilde{z}_i)}$. Moreover, strictly local minimum points of $\frac{q^2}{b}$ on the boundary can also give vortex solutions for the shallow water equation.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/2019-AAM-18081

Annals of Applied Mathematics, Vol. 35 (2019), Iss. 3 : pp. 221–249

Published online:    2019-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    29

Keywords:    shallow water equation free boundary stream function vortex solution.

Author Details

Daomin Cao

Zhongyuan Liu