Steady States of Sheared Active Nematics

Steady States of Sheared Active Nematics

Year:    2014

Author:    Zhenlu Cui, Xiaoming Zeng, Jianbing Su

Advances in Applied Mathematics and Mechanics, Vol. 6 (2014), Iss. 1 : pp. 75–86

Abstract

A continuum hydrodynamic model has been used to characterize flowing active nematics. The behavior of such a system subjected to a weak steady shear is analyzed. We explore the director structures and flow behaviors of the system in flow-aligning and flow tumbling regimes. Combining asymptotic analysis and numerical simulations, we extend previous studies to give a complete characterization of the steady states for both contractile and extensile particles in flow-aligning and flow-tumbling regimes.  Another key prediction of this work is the role of the system size on the steady states of an active nematic system: if the system size is small, the velocity and the director angle files for both flow-tumbling contractile and extensile systems are similar to those of passive nematics; if the system is big, the velocity and the director angle files for flow-aligning contractile systems and tumbling extensile systems are akin to sheared passive cholesterics while they are oscillatory for flow-aligning extensile and tumbling contractile systems.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/aamm.12-m12109

Advances in Applied Mathematics and Mechanics, Vol. 6 (2014), Iss. 1 : pp. 75–86

Published online:    2014-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    12

Keywords:    Asymptotic expansion active liquid crystals hydrodynamics.

Author Details

Zhenlu Cui

Xiaoming Zeng

Jianbing Su

  1. Apparent Viscosity of Active Nematics in Poiseuille Flow

    Cui, Zhenlu

    Su, Jianbing

    Zeng, Xiaoming

    Journal of Physics: Conference Series, Vol. 640 (2015), Iss. P.012011

    https://doi.org/10.1088/1742-6596/640/1/012011 [Citations: 0]