On a Right Inverse of a Polynomial of the Laplace in the Weighted Hilbert Space $L^2 (\mathbb{R}^n ,e^{−|x|^2} )$

On a Right Inverse of a Polynomial of the Laplace in the Weighted Hilbert Space $L^2 (\mathbb{R}^n ,e^{−|x|^2} )$

Year:    2023

Author:    Shaoyu Dai, Yang Liu, Yifei Pan

Analysis in Theory and Applications, Vol. 39 (2023), Iss. 1 : pp. 83–92

Abstract

Let $P(∆)$ be a polynomial of the Laplace operator $$∆ = \sum\limits^n_{j=1}\frac{∂^2}{∂x^2_j} \ \  on  \ \  \mathbb{R}^n.$$ We prove the existence of a bounded right inverse of the differential operator $P(∆)$ in the weighted Hilbert space with the Gaussian measure, i.e., $L^2(\mathbb{R}^n ,e^{−|x|^2}).$

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/ata.OA-2021-0027

Analysis in Theory and Applications, Vol. 39 (2023), Iss. 1 : pp. 83–92

Published online:    2023-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    10

Keywords:    Laplace operator polynomial right inverse weighted Hilbert space Gaussian measure.

Author Details

Shaoyu Dai

Yang Liu

Yifei Pan