Existence and Multiplicity Results for a Class of Nonlinear Schrödinger Equations with Magnetic Potential Involving Sign-Changing Nonlinearity

Year:    2022

Author:    Francisco Odair de Paiva, Sandra Machado de Souza Lima, Olimpio Hiroshi Miyagaki

Analysis in Theory and Applications, Vol. 38 (2022), Iss. 2 : pp. 148–177

Abstract

In this work we consider the following class of elliptic problems $\begin{cases}  −∆_Au + u = a(x)|u|^{q−2}u + b(x)|u|^{p−2}u & {\rm in} & \mathbb{R}^N, \\u ∈ H^1_A (\mathbb{R}^N),   \tag{P} \end{cases}$ with $2 < q < p < 2^∗ = \frac{2N}{N−2},$ $a(x)$ and $b(x)$ are functions that can change sign and satisfy some additional conditions; $u \in H^1_A (\mathbb{R}^N)$ and $A : \mathbb{R}^N → \mathbb{R}^N$ is a magnetic potential. Also using the Nehari method in combination with other complementary arguments, we discuss the existence of infinitely many solutions to the problem in question, varying the assumptions about the weight functions.

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/ata.OA-2021-0001

Analysis in Theory and Applications, Vol. 38 (2022), Iss. 2 : pp. 148–177

Published online:    2022-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    30

Keywords:    Magnetic potential sign-changing weight functions Nehari manifold Fibering map.

Author Details

Francisco Odair de Paiva

Sandra Machado de Souza Lima

Olimpio Hiroshi Miyagaki

  1. Ultra-short optical pulses in a birefringent fiber via a generalized coupled Hirota system with the singular manifold and symbolic computation

    Gao, Xin-Yi

    Guo, Yong-Jiang

    Shan, Wen-Rui

    Applied Mathematics Letters, Vol. 140 (2023), Iss. P.108546

    https://doi.org/10.1016/j.aml.2022.108546 [Citations: 29]