Rearrangement Free Method for Hardy-Littlewood-Sobolev Inequalities on $\mathbb{S}^n$

Year:    2022

Author:    Shutao Zhang, Yazhou Han

Analysis in Theory and Applications, Vol. 38 (2022), Iss. 2 : pp. 178–203

Abstract

For conformal Hardy-Littlewood-Sobolev(HLS) inequalities [22] and reversed conformal HLS inequalities [8] on $\mathbb{S}^n,$ a new proof is given for the attainability of their sharp constants. Classical methods used in [22] and [8] depends on rearrangement inequalities. Here, we use the subcritical approach to construct the extremal sequence and circumvent the blow-up phenomenon by renormalization method. The merit of the method is that it does not rely on rearrangement inequalities.

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/ata.OA-2021-0025

Analysis in Theory and Applications, Vol. 38 (2022), Iss. 2 : pp. 178–203

Published online:    2022-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    26

Keywords:    Hardy-Littlewood-Sobolev inequality reversed Hardy-Littlewood-Sobolev inequality rearrangement free method.

Author Details

Shutao Zhang

Yazhou Han