Index Iteration Theory for Brake Orbit Type Solutions and Applications

Year:    2021

Author:    Chungen Liu, Yiming Long, Duanzhi Zhang

Analysis in Theory and Applications, Vol. 37 (2021), Iss. 2 : pp. 129–156

Abstract

In this paper, we give a survey on the index iteration theory of an index theory for brake orbit type solutions and its applications in the study of brake orbit problems including the Seifert conjecture and the minimal period solution problems in brake orbit cases.

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/ata.2021.pr80.05

Analysis in Theory and Applications, Vol. 37 (2021), Iss. 2 : pp. 129–156

Published online:    2021-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    28

Keywords:    Hamiltonian system Index theory Iteration theory Lagrangian boundary problem Seifert conjecture Brake orbits.

Author Details

Chungen Liu

Yiming Long

Duanzhi Zhang

  1. Brake orbits with minimal period estimates of first-order variant subquadratic Hamiltonian systems

    Zhang, Xiaofei | Wang, Fanjing

    Electronic Research Archive, Vol. 30 (2022), Iss. 11 P.4220

    https://doi.org/10.3934/era.2022214 [Citations: 0]
  2. Brake orbits for Hamiltonian systems of the classical type via geodesics in singular Finsler metrics

    Corona, Dario | Giannoni, Fabio

    Advances in Nonlinear Analysis, Vol. 11 (2022), Iss. 1 P.1223

    https://doi.org/10.1515/anona-2022-0222 [Citations: 4]