Shadowing Homoclinic Chains to a Symplectic Critical Manifold

Year:    2021

Author:    Sergey Bolotin

Analysis in Theory and Applications, Vol. 37 (2021), Iss. 1 : pp. 1–23

Abstract

We prove the existence of trajectories  shadowing chains of heteroclinic orbits to a symplectic normally hyperbolic critical manifold of a Hamiltonian system. The results are quite different for real and complex eigenvalues. General results are applied to Hamiltonian systems depending on a parameter which slowly changes with rate $\varepsilon$. If the frozen autonomous system has a hyperbolic equilibrium possessing transverse homoclinic orbits, we construct trajectories shadowing homoclinic chains with energy having quasirandom jumps of order $\varepsilon$ and changing with average rate of order $\varepsilon|\ln\varepsilon|$. This provides a partial multidimensional extension of the results of A. Neishtadt on the destruction of adiabatic invariants for systems with one  degree of freedom and a figure 8 separatrix.

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/ata.2021.pr80.11

Analysis in Theory and Applications, Vol. 37 (2021), Iss. 1 : pp. 1–23

Published online:    2021-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    23

Keywords:    Hamiltonian system homoclinic orbit shadowing.

Author Details

Sergey Bolotin

  1. Crossing of the Critical Energy Level in Hamiltonian Systems with Slow Dependence on Time

    Bolotin, S. V.

    Mathematical Notes, Vol. 110 (2021), Iss. 5-6 P.956

    https://doi.org/10.1134/S000143462111033X [Citations: 0]
  2. Пересечение критического уровня энергии в медленно зависящих от времени гамильтоновых системах

    Bolotin, Sergey Vladimirovich

    Математические заметки, Vol. 110 (2021), Iss. 6 P.927

    https://doi.org/10.4213/mzm13336 [Citations: 0]