Gaussian BV Functions and Gaussian BV Capacity on Stratified Groups

Year:    2021

Author:    Jizheng Huang, Pengtao Li, Yu Liu

Analysis in Theory and Applications, Vol. 37 (2021), Iss. 3 : pp. 311–329

Abstract

Let $G$ be a stratified Lie group and let $\{X_1, \cdots, X_{n_1}\}$ be a basis of the first layer of the Lie algebra of $G$. The sub-Laplacian $\Delta_G$ is defined by $$\Delta_G= -\sum^{n_1}_{j=1} X^2_j. $$ The operator defined by $$\Delta_G-\sum^{n_1}_{j=1}\frac{X_jp}{p}X_j$$ is called the Ornstein-Uhlenbeck operator on $G$, where $p$ is a heat kernel at time 1 on $G$. In this paper, we investigate Gaussian BV functions and Gaussian BV capacities associated with the Ornstein-Uhlenbeck operator on the stratified Lie group.

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/ata.2021.lu80.03

Analysis in Theory and Applications, Vol. 37 (2021), Iss. 3 : pp. 311–329

Published online:    2021-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    19

Keywords:    Gaussian $p$ bounded variation capacity perimeter stratified Lie group.

Author Details

Jizheng Huang

Pengtao Li

Yu Liu

  1. BV Capacity and Sobolev Capacity for the Laguerre Operator

    Wang, He | Liu, Yu

    Bulletin of the Malaysian Mathematical Sciences Society, Vol. 46 (2023), Iss. 3

    https://doi.org/10.1007/s40840-023-01500-7 [Citations: 0]
  2. Laguerre BV spaces, Laguerre perimeter and their applications

    Wang, He | Liu, Yu

    Communications in Analysis and Mechanics, Vol. 15 (2023), Iss. 2 P.189

    https://doi.org/10.3934/cam.2023011 [Citations: 0]