Boundedness of Area Functions Related to Schrödinger Operators and Their Commutators in Weighted Hardy Spaces

Year:    2021

Author:    Lin Tang, Jue Wang, Hua Zhu

Analysis in Theory and Applications, Vol. 37 (2021), Iss. 3 : pp. 362–386

Abstract

In this paper, we consider the area function $S_Q$ related to the Schrödinger operator $\mathcal{L}$ and its commutator $S_{Q,b}$, establish the boundedness of $S_Q$ from $H^p_\rho(w)$ to $L^p(w)$ or $WL^p(w),$ as well as the boundedness of $S_{Q,b}$ from $H^1_\rho(w)$ to $WL^1(w).$

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/ata.2021.lu80.06

Analysis in Theory and Applications, Vol. 37 (2021), Iss. 3 : pp. 362–386

Published online:    2021-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    25

Keywords:    Area functions Schrödinger operator weighted Hardy space.

Author Details

Lin Tang

Jue Wang

Hua Zhu

  1. Variation Operators On Weighted Hardy and BMO Spaces in the Schrödinger Setting

    Zhang, Qian

    Tang, Lin

    Bulletin of the Malaysian Mathematical Sciences Society, Vol. 45 (2022), Iss. 5 P.2285

    https://doi.org/10.1007/s40840-022-01339-4 [Citations: 2]