Multiple Axially Asymmetric Solutions to a Mean Field Equation on $\mathbb{S}^{2}$

Year:    2020

Author:    Zhuoran Du, Changfeng Gui, Jiaming Jin, Yuan Li

Analysis in Theory and Applications, Vol. 36 (2020), Iss. 1 : pp. 19–32

Abstract

We study the following mean field equation

$$\Delta_{g}u+\rho\left(\frac{e^{u}}{\int_{\mathbb{S}^{2}}e^{u}d\mu}-\frac{1}{4\pi}\right)=0\ \  \mbox{in}\ \ \mathbb{S}^{2},$$

where $\rho$ is a real parameter. We obtain the existence of multiple axially asymmetric solutions bifurcating from $u=0$ at the values $\rho=4n(n+1)\pi$ for any  odd integer $n\geq3$.

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/ata.OA-0016

Analysis in Theory and Applications, Vol. 36 (2020), Iss. 1 : pp. 19–32

Published online:    2020-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    14

Keywords:    Mean field equation axially asymmetric solutions bifurcation.

Author Details

Zhuoran Du

Changfeng Gui

Jiaming Jin

Yuan Li