On Sharpening of a Theorem of Ankeny and Rivlin

On Sharpening of a Theorem of Ankeny and Rivlin

Year:    2020

Author:    Aseem Dalal, N. K. Govil

Analysis in Theory and Applications, Vol. 36 (2020), Iss. 2 : pp. 225–234

Abstract

Let $p(z)=\sum^n_{v=0}a_vz^v$ be a polynomial of degree $n$,
                          $M(p,R)=:\underset{|z|=R\geq 0}{\max}|p(z)|$ and $M(p,1)=:||p||$.
Then according to a well-known result of Ankeny and Rivlin [1], we have for $R\geq 1$, $$M(p,R)\leq (\frac{R^n+1}{2})||p||.$$This inequality has been sharpened by Govil [4], who proved that for $R\geq 1$, $$M(p,R)\leq (\frac{R^n+1}{2})||p||-\frac{n}{2}(\frac{||p||^2-4|a_n|^2}{||p||})\left\{\frac{(R-1||p||)}{||p||+2|a_n|}-ln(1+\frac{(R-1)||p||}{||p||+2|a_n|})\right\}.$$In this paper, we sharpen the above inequality of Govil [4], which in turn sharpens the inequality of Ankeny and Rivlin [1].

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/ata.OA-2018-0001

Analysis in Theory and Applications, Vol. 36 (2020), Iss. 2 : pp. 225–234

Published online:    2020-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    10

Keywords:    Inequalities polynomials zeros.

Author Details

Aseem Dalal

N. K. Govil

  1. Frontiers in Industrial and Applied Mathematics

    Growth of Polynomials Having No Zero Inside a Circle

    Devi, Khangembam Babina | Reingachan, N | Singh, Thangjam Birkramjit | Chanam, Barchand

    2023

    https://doi.org/10.1007/978-981-19-7272-0_32 [Citations: 0]
  2. Extremal Problems and Inequalities of Markov-Bernstein Type for Algebraic Polynomial

    Different types of Bernstein inequalities

    Gardner, Robert B. | Govil, Narendra K. | Milovanović, Gradimir V. | Rassias, Themistocles M.

    2022

    https://doi.org/10.1016/B978-0-12-811988-4.00009-8 [Citations: 0]
  3. Growth of polynomials not vanishing inside a circle

    Devi, Khangembam Babina | Singh, Thangjam Birkramjit | Soraisam, Robinson | Chanam, Barchand

    The Journal of Analysis, Vol. 30 (2022), Iss. 4 P.1439

    https://doi.org/10.1007/s41478-022-00410-4 [Citations: 0]
  4. A note on sharpening of a theorem of Ankeny and Rivlin

    Dalal, Aseem | Govil, N.K.

    Applicable Analysis and Discrete Mathematics, Vol. 17 (2023), Iss. 1 P.273

    https://doi.org/10.2298/AADM200206012D [Citations: 2]
  5. Extremal Problems and Inequalities of Markov-Bernstein Type for Algebraic Polynomial

    Bibliography

    2022

    https://doi.org/10.1016/B978-0-12-811988-4.00014-1 [Citations: 0]