Estimates of Dirichlet Eigenvalues for One-Dimensional Fractal Drums

Year:    2020

Author:    Hua Chen, Jinning Li

Analysis in Theory and Applications, Vol. 36 (2020), Iss. 3 : pp. 243–261

Abstract

Let $\Omega$, with finite Lebesgue measure $|\Omega|$, be a non-empty open subset of $\mathbb{R}$, and $\Omega=\bigcup_{j=1}^\infty\Omega_j$, where the open sets $\Omega_j$ are pairwise disjoint and the boundary $\Gamma=\partial\Omega$ has Minkowski dimension $D\in (0,1)$. In this paper we study the Dirichlet eigenvalues problem on the domain $\Omega$ and give the exact second asymptotic term for the eigenvalues, which is related to the Minkowski dimension $D$. Meanwhile, we give sharp lower bound estimates for Dirichlet eigenvalues for such one-dimensional fractal domains.

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/ata.OA-SU7

Analysis in Theory and Applications, Vol. 36 (2020), Iss. 3 : pp. 243–261

Published online:    2020-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    19

Keywords:    One-dimensional fractal drum Dirichlet eigenvalues Pόlya conjecture Minkowski dimension.

Author Details

Hua Chen

Jinning Li

  1. Existence and multiplicity of solutions to Dirichlet problem for semilinear subelliptic equation with a free perturbation

    Chen, Hua

    Chen, Hong-Ge

    Yuan, Xin-Rui

    Journal of Differential Equations, Vol. 341 (2022), Iss. P.504

    https://doi.org/10.1016/j.jde.2022.09.021 [Citations: 3]