Rigidity of Minimizers in Nonlocal Phase Transitions II

Year:    2019

Analysis in Theory and Applications, Vol. 35 (2019), Iss. 1 : pp. 1–27

Abstract

In this paper we extend the results of [12] to the borderline case $s = \frac 12$. We obtain the classification of global bounded solutions with asymptotically flat level sets for semilinear nonlocal equations of the type $$\Delta ^{\frac 12} u=W'(u) \quad \mbox{in}\quad  \mathbb{R}^n,$$where $W$ is a double well potential.

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/ata.OA-0008

Analysis in Theory and Applications, Vol. 35 (2019), Iss. 1 : pp. 1–27

Published online:    2019-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    27

Keywords:    De Giorgi’s conjecture fractional Laplacian.

  1. On stable solutions for boundary reactions: a De Giorgi-type result in dimension 4 + 1

    Figalli, Alessio | Serra, Joaquim

    Inventiones mathematicae, Vol. 219 (2020), Iss. 1 P.153

    https://doi.org/10.1007/s00222-019-00904-2 [Citations: 13]
  2. Minimal surfaces and free boundaries: Recent developments

    Caffarelli, Luis | Sire, Yannick

    Bulletin of the American Mathematical Society, Vol. 57 (2019), Iss. 1 P.91

    https://doi.org/10.1090/bull/1673 [Citations: 2]
  3. Some monotonicity results for the fractional Laplacian in unbounded domain

    Wu, Leyun | Yu, Mei

    Complex Variables and Elliptic Equations, Vol. 66 (2021), Iss. 4 P.689

    https://doi.org/10.1080/17476933.2020.1736053 [Citations: 3]
  4. Existence and rigidity of the vectorial Peierls–Nabarro model for dislocations in high dimensions

    Gao, Yuan | Liu, Jian-Guo | Liu, Zibu

    Nonlinearity, Vol. 34 (2021), Iss. 11 P.7778

    https://doi.org/10.1088/1361-6544/ac24e3 [Citations: 6]
  5. A symmetry result in $${\mathbb {R}}^2$$ for global minimizers of a general type of nonlocal energy

    Bucur, Claudia

    Calculus of Variations and Partial Differential Equations, Vol. 59 (2020), Iss. 2

    https://doi.org/10.1007/s00526-020-1698-6 [Citations: 4]
  6. Some perspectives on (non)local phase transitions and minimal surfaces

    Dipierro, Serena | Valdinoci, Enrico

    Bulletin of Mathematical Sciences, Vol. 13 (2023), Iss. 01

    https://doi.org/10.1142/S1664360723300013 [Citations: 2]
  7. Nonlocal Minimal Graphs in the Plane are Generically Sticky

    Dipierro, Serena | Savin, Ovidiu | Valdinoci, Enrico

    Communications in Mathematical Physics, Vol. 376 (2020), Iss. 3 P.2005

    https://doi.org/10.1007/s00220-020-03771-8 [Citations: 11]
  8. Nonlocal minimal surfaces: recent developments, applications, and future directions

    Serra, Joaquim

    SeMA Journal, Vol. 81 (2024), Iss. 2 P.165

    https://doi.org/10.1007/s40324-023-00345-1 [Citations: 0]