Global Regularity of 2-D Density Patches for Viscous Inhomogeneous Incompressible Flow with General Density: High Regularity Case

Year:    2019

Analysis in Theory and Applications, Vol. 35 (2019), Iss. 2 : pp. 163–191

Abstract

This paper is a continuation work of [26] and studies the propagation of the high-order boundary regularities of the two-dimensional density patch for viscous inhomogeneous incompressible flow. We assume the initial density $\rho_0=\eta_1{1}_{\Omega_0}+\eta_2{1}_{\Omega_0^c}$, where $(\eta_1,\eta_2)$ is any pair of positive constants and $\Omega_0$ is a bounded, simply connected domain with $W^{k+2,p}(R^2)$ boundary regularity. We prove that for any positive time $t$, the density function $\rho(t)=\eta_1{1}_{\Omega(t)}+\eta_2{1}_{\Omega(t)^c}$, and the domain $\Omega(t)$ preserves the $W^{k+2,p}$-boundary regularity.

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/ata.OA-0004

Analysis in Theory and Applications, Vol. 35 (2019), Iss. 2 : pp. 163–191

Published online:    2019-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    29

Keywords:    Inhomogeneous incompressible Navier-Stokes equations density patch striated distributions Littlewood-Paley theory.

  1. Global regularity of density patch for the 3D inhomogeneous Navier–Stokes equations

    Chen, Qionglei | Li, Yatao

    Zeitschrift für angewandte Mathematik und Physik, Vol. 71 (2020), Iss. 2

    https://doi.org/10.1007/s00033-020-1263-3 [Citations: 1]
  2. Global Fujita-Kato solution of 3-D inhomogeneous incompressible Navier-Stokes system

    Zhang, Ping

    Advances in Mathematics, Vol. 363 (2020), Iss. P.107007

    https://doi.org/10.1016/j.aim.2020.107007 [Citations: 14]
  3. Global Regularity of NonDiffusive Temperature Fronts for the Two-Dimensional Viscous Boussinesq System

    Chae, Dongho | Miao, Qianyun | Xue, Liutang

    SIAM Journal on Mathematical Analysis, Vol. 54 (2022), Iss. 4 P.4043

    https://doi.org/10.1137/21M1457345 [Citations: 1]
  4. Global well-posedness of Chemotaxis-Navier–Stokes system with refined rough initial data inRd

    Lin, Long | Qian, Chenyin

    Nonlinear Analysis: Real World Applications, Vol. 78 (2024), Iss. P.104094

    https://doi.org/10.1016/j.nonrwa.2024.104094 [Citations: 0]
  5. Global well-posedness for 2D fractional inhomogeneous Navier–Stokes equations with rough density

    Li, Yatao | Miao, Qianyun | Xue, Liutang

    Nonlinearity, Vol. 36 (2023), Iss. 7 P.3866

    https://doi.org/10.1088/1361-6544/acda75 [Citations: 0]