KAM Theory for Partial Differential Equations

Year:    2019

Analysis in Theory and Applications, Vol. 35 (2019), Iss. 3 : pp. 235–267

Abstract

In the last years much progress has been achieved in KAM theory concerning bifurcation of quasi-periodic solutions of Hamiltonian or reversible partial differential equations. We provide an overview of the state of the art in this field.

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/ata.OA-0013

Analysis in Theory and Applications, Vol. 35 (2019), Iss. 3 : pp. 235–267

Published online:    2019-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    33

Keywords:    KAM for PDEs quasi-periodic solutions small divisors infinite dimensional Hamiltonian and reversible systems water waves nonlinear wave and Schrödinger equations KdV.

  1. Long time behavior of solutions for a damped Benjamin–Ono equation

    Gassot, Louise

    Mathematische Zeitschrift, Vol. 300 (2022), Iss. 2 P.1939

    https://doi.org/10.1007/s00209-021-02849-w [Citations: 2]
  2. Chaotic-Like Transfers of Energy in Hamiltonian PDEs

    Giuliani, Filippo | Guardia, Marcel | Martin, Pau | Pasquali, Stefano

    Communications in Mathematical Physics, Vol. 384 (2021), Iss. 2 P.1227

    https://doi.org/10.1007/s00220-021-03956-9 [Citations: 6]
  3. Long Time Dynamics for Generalized Korteweg–de Vries and Benjamin–Ono Equations

    Bernier, Joackim | Grébert, Benoît

    Archive for Rational Mechanics and Analysis, Vol. 241 (2021), Iss. 3 P.1139

    https://doi.org/10.1007/s00205-021-01666-z [Citations: 14]
  4. Quasi-periodic solutions to the incompressible Euler equations in dimensions two and higher

    Enciso, Alberto | Peralta-Salas, Daniel | Torres de Lizaur, Francisco

    Journal of Differential Equations, Vol. 354 (2023), Iss. P.170

    https://doi.org/10.1016/j.jde.2023.01.013 [Citations: 9]
  5. Reducibility of 1-d Schrödinger equation with unbounded oscillation perturbations

    Liang, Zhenguo | Wang, Zhiqiang

    Israel Journal of Mathematics, Vol. 258 (2023), Iss. 1 P.287

    https://doi.org/10.1007/s11856-023-2473-0 [Citations: 0]
  6. Reducibility of 1-d quantum harmonic oscillator equation with unbounded oscillation perturbations

    Liang, Z. | Luo, J.

    Journal of Differential Equations, Vol. 270 (2021), Iss. P.343

    https://doi.org/10.1016/j.jde.2020.07.040 [Citations: 8]
  7. The KAM method for the spectral theory of quasi-periodic Schrödinger operators

    Jiangong, You

    SCIENTIA SINICA Mathematica, Vol. 54 (2024), Iss. 6 P.863

    https://doi.org/10.1360/SSM-2024-0013 [Citations: 0]
  8. Quasi-periodic solutions for differential equations with an elliptic equilibrium under delayed perturbation

    He, Xiaolong

    Journal of Differential Equations, Vol. 380 (2024), Iss. P.360

    https://doi.org/10.1016/j.jde.2023.10.052 [Citations: 1]
  9. Diophantine approximation as Cosmic Censor for Kerr–AdS black holes

    Kehle, Christoph

    Inventiones mathematicae, Vol. 227 (2022), Iss. 3 P.1169

    https://doi.org/10.1007/s00222-021-01078-6 [Citations: 11]
  10. Normal Form for the Fractional Nonlinear Schrödinger Equation with Cubic Nonlinearity

    Ma, Fuzheng | Xu, Xindong

    Qualitative Theory of Dynamical Systems, Vol. 22 (2023), Iss. 3

    https://doi.org/10.1007/s12346-023-00797-w [Citations: 1]
  11. Quasiperiodic solutions of NLS with Liouvillean frequencies

    Xu, Xindong | You, Jiangong | Zhou, Qi

    Analysis & PDE, Vol. 14 (2021), Iss. 8 P.2327

    https://doi.org/10.2140/apde.2021.14.2327 [Citations: 4]
  12. Quasi-periodically forced and reversible vibrations of beam equations with Liouvillean frequencies

    Lou, Zhaowei | Chang, Ningning

    Zeitschrift für angewandte Mathematik und Physik, Vol. 74 (2023), Iss. 2

    https://doi.org/10.1007/s00033-023-01948-4 [Citations: 0]