Commutators of Singular Integral Operators Related to Magnetic Schrödinger Operators

Commutators of Singular Integral Operators Related to Magnetic Schrödinger Operators

Year:    2018

Analysis in Theory and Applications, Vol. 34 (2018), Iss. 1 : pp. 45–76

Abstract

Let $A:=−(\nabla−i\vec{a})·(\nabla−i\vec{a})+V$ be a magnetic Schrödinger operator on $L^2(\mathbb{R}^n)$, $n\geq 2$, where $\vec{a} := (a_1 ,···,a_n) \in L^2_{loc}(\mathbb{R^n}, \mathbb{R^n})$ and $0\leq V \in L^1_{loc}(\mathbb{R^n})$. In this paper, we show that for a function $b$ in Lipschitz space Lip$_{\alpha}$ $(\mathbb{R^n})$ with $\alpha\in (0,1)$, the commutator $[b, V^{1/2}A^{-1/2}]$ is bounded from $L^p(\mathbb{R^n})$ to $L^q(\mathbb{R^n})$, where $p$, $q\in (1,2]$ and $1/p−1/q = α/n$. 

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/ata.2018.v34.n1.4

Analysis in Theory and Applications, Vol. 34 (2018), Iss. 1 : pp. 45–76

Published online:    2018-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    32

Keywords:    Commutator Lipschitz space the sharp maxical function magnetic Schrödinger operator Hölder inequality.