On Characterization of Nonuniform Tight Wavelet Frames on Local Fields

On Characterization of Nonuniform Tight Wavelet Frames on Local Fields

Year:    2018

Analysis in Theory and Applications, Vol. 34 (2018), Iss. 2 : pp. 135–146

Abstract

In this article, we introduce a notion of nonuniform wavelet frames on local fields of positive characteristic. Furthermore, we gave a complete characterization of tight nonuniform wavelet frames on local fields of positive characteristic via Fourier transform. Our results also hold for the Cantor dyadic group and the Vilenkin groups as they are local fields of positive characteristic.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/ata.2018.v34.n2.4

Analysis in Theory and Applications, Vol. 34 (2018), Iss. 2 : pp. 135–146

Published online:    2018-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    12

Keywords:    Nonuniform wavelet frame tight wavelet frame Fourier transform local field.

  1. Tight wavelet frames on zero-dimensional groups. Construction and approximation

    Lukomskii, Sergey

    Numerical Functional Analysis and Optimization, Vol. 44 (2023), Iss. 12 P.1209

    https://doi.org/10.1080/01630563.2023.2228392 [Citations: 0]
  2. Construction of Nonuniform Wavelet Frames on Non-Archimedean Fields

    Ahmad, Owais | Ahmad, Neyaz

    Mathematical Physics, Analysis and Geometry, Vol. 23 (2020), Iss. 4

    https://doi.org/10.1007/s11040-020-09371-1 [Citations: 8]
  3. Characterization of tight wavelet frames with composite dilations in L2(Rn)

    Ahmad, Owais

    Publications de l'Institut Mathematique, Vol. 113 (2023), Iss. 127 P.121

    https://doi.org/10.2298/PIM2327121A [Citations: 2]
  4. Wavelet bi-frames on local fields

    Ahmad, Owais | Ahmad, Neyaz | Ahmad, Mobin

    Journal of Numerical Analysis and Approximation Theory, Vol. 51 (2022), Iss. 2 P.124

    https://doi.org/10.33993/jnaat512-1265 [Citations: 0]
  5. Vector valued nonuniform nonstationary wavelets and associated MRA on local fields

    Ahmad, O. | Wani, A. H. | Sheikh, N. A. | Ahmad, M.

    Journal of Applied Mathematics, Statistics and Informatics, Vol. 17 (2021), Iss. 2 P.19

    https://doi.org/10.2478/jamsi-2021-0007 [Citations: 0]
  6. Construction of Parseval Framelets Associated with GMRA on Local Fields of Positive Characteristic

    Ahmad, Owais | Bhat, Mohammad Younus | Sheikh, Neyaz Ahmad

    Numerical Functional Analysis and Optimization, Vol. 42 (2021), Iss. 3 P.344

    https://doi.org/10.1080/01630563.2021.1878370 [Citations: 14]
  7. Non homogeneous dual wavelet frames and oblique extension principles in Hs(K)

    Ahmad, Owais

    Filomat, Vol. 37 (2023), Iss. 14 P.4549

    https://doi.org/10.2298/FIL2314549A [Citations: 1]
  8. Nonuniform nonstationary wavelets and associated multiresolution analysis on local fields

    Ahmad, Owais | Sheikh, Neyaz A.

    Novi Sad Journal of Mathematics, Vol. 53 (2022), Iss. 2 P.155

    https://doi.org/10.30755/NSJOM.13010 [Citations: 2]
  9. On generalized inequalities for nonuniform wavelet frames in $$L^2({\mathbb {K}})$$

    Ahmad, Owais | Sheikh, Neyaz A. | Hazari, Abid Ayub

    Afrika Matematika, Vol. 33 (2022), Iss. 1

    https://doi.org/10.1007/s13370-021-00945-y [Citations: 2]
  10. Nonuniform biorthogonal wavelets on positive half line via Walsh Fourier transform

    Ahmad, Owais | Sheikh, Neyaz A. | Ahmad, Mobin

    Journal of the Egyptian Mathematical Society, Vol. 29 (2021), Iss. 1

    https://doi.org/10.1186/s42787-021-00128-5 [Citations: 0]
  11. Generalized Multiresolution Structures in Reducing Subspaces of Local Fields

    Ahmad, Owais | Sheikh, Neyaz Ahmad

    Acta Mathematica Sinica, English Series, Vol. 38 (2022), Iss. 12 P.2163

    https://doi.org/10.1007/s10114-022-1291-3 [Citations: 0]
  12. On the nonhomogeneous wavelet bi-frames for reducing subspaces of Hs(K)

    Bhat, Mohammad Younus

    Annals of the University of Craiova - Mathematics and Computer Science Series, Vol. 49 (2022), Iss. 2 P.401

    https://doi.org/10.52846/ami.v49i2.1615 [Citations: 1]
  13. Nonuniform nonhomogeneous dual wavelet frames in Sobolev spaces in $$L^2({\mathbb {K}})$$

    Ahmad, O. | Sheikh, N. A. | Ali, M. A.

    Afrika Matematika, Vol. 31 (2020), Iss. 7-8 P.1145

    https://doi.org/10.1007/s13370-020-00786-1 [Citations: 13]