Year: 2018
Analysis in Theory and Applications, Vol. 34 (2018), Iss. 2 : pp. 187–198
Abstract
A loopless graph on $n$ vertices in which vertices are connected at least by $a$ and at most by $b$ edges is called a $(a,b,n)$-graph. A $(b,b,n)$-graph is called $(b,n)$-graph and is denoted by $K^b_n$ (it is a complete graph), its complement by $\overline{K}^b_n$. A non increasing sequence $π = (d_1,···,d_n)$ of nonnegative integers is said to be $(a,b,n)$ graphic if it is realizable by an $(a,b,n)$-graph. We say a simple graphic sequence $π = (d_1,···,d_n)$ is potentially $K_4−K_2\cup K_2$-graphic if it has a a realization containing an $K_4−K_2\cup K_2$ as a subgraph where $K_4$ is a complete graph on four vertices and $K_2\cup K_2$ is a set of independent edges. In this paper, we find the smallest degree sum such that every $n$-term graphical sequence contains $K_4−K_2\cup K_2$ as subgraph.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/ata.2018.v34.n2.8
Analysis in Theory and Applications, Vol. 34 (2018), Iss. 2 : pp. 187–198
Published online: 2018-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 12
Keywords: Graph $(a b n)$-graph potentially graphical sequences.