Nearly Comonotone Approximation of Periodic Functions

Nearly Comonotone Approximation of Periodic Functions

Year:    2017

Analysis in Theory and Applications, Vol. 33 (2017), Iss. 1 : pp. 74–92

Abstract

Suppose that a continuous $2\pi$-periodic function $f$ on the real axis changes its monotonicity at points $y_i: -\pi\le y_{2s}< y_{2s-1}< \cdots< y_1<\pi,\ s\in\Bbb N$. In this paper, for each $n\ge N,$ a trigonometric polynomial $P_n$ of order $cn$ is found such that: $P_n$ has the same monotonicity as $f,$ everywhere except, perhaps, the small intervals$$(y_i-\pi/n,y_i+\pi/n)$$and$$\|f-P_n\|\le c(s)\omega_3(f,\pi/n),$$where $N$ is a constant depending only on $\min\limits_{i=1,\cdots,2s}\{y_i-y_{i+1}\},\ c,\ c(s)$ are constants depending only on $s,\ \omega_3(f,\cdot)$ is the modulus of smoothness of the $3$-rd order of the function $f,$ and $\|\cdot\|$ is the max-norm.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/ata.2017.v33.n1.7

Analysis in Theory and Applications, Vol. 33 (2017), Iss. 1 : pp. 74–92

Published online:    2017-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    19

Keywords:    Periodic functions comonotone approximation trigonometric polynomials Jackson-type estimates.

  1. Stechkin-Type Estimate for Nearly Copositive Approximations of Periodic Functions

    Dzyubenko, G. A.

    Ukrainian Mathematical Journal, Vol. 72 (2020), Iss. 5 P.722

    https://doi.org/10.1007/s11253-020-01812-y [Citations: 0]
  2. Almost Coconvex Approximation of Continuous Periodic Functions

    Dzyubenko, G. A.

    Ukrainian Mathematical Journal, Vol. 71 (2019), Iss. 3 P.402

    https://doi.org/10.1007/s11253-019-01654-3 [Citations: 2]
  3. Оцінка Стєчкіна для майже копозитивного наближення періодичних функцій

    Dzyubenko, G. A.

    Ukrains’kyi Matematychnyi Zhurnal, Vol. 72 (2020), Iss. 5

    https://doi.org/10.37863/umzh.v72i5.1127 [Citations: 0]
  4. Degree of nearly comonotone approximation of periodic functions

    Dzyubenko, German

    Asian-European Journal of Mathematics, Vol. 16 (2023), Iss. 11

    https://doi.org/10.1142/S1793557123502005 [Citations: 0]