Year: 2017
Analysis in Theory and Applications, Vol. 33 (2017), Iss. 1 : pp. 74–92
Abstract
Suppose that a continuous $2\pi$-periodic function $f$ on the real axis changes its monotonicity at points $y_i: -\pi\le y_{2s}< y_{2s-1}< \cdots< y_1<\pi,\ s\in\Bbb N$. In this paper, for each $n\ge N,$ a trigonometric polynomial $P_n$ of order $cn$ is found such that: $P_n$ has the same monotonicity as $f,$ everywhere except, perhaps, the small intervals$$(y_i-\pi/n,y_i+\pi/n)$$and$$\|f-P_n\|\le c(s)\omega_3(f,\pi/n),$$where $N$ is a constant depending only on $\min\limits_{i=1,\cdots,2s}\{y_i-y_{i+1}\},\ c,\ c(s)$ are constants depending only on $s,\ \omega_3(f,\cdot)$ is the modulus of smoothness of the $3$-rd order of the function $f,$ and $\|\cdot\|$ is the max-norm.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/ata.2017.v33.n1.7
Analysis in Theory and Applications, Vol. 33 (2017), Iss. 1 : pp. 74–92
Published online: 2017-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 19
Keywords: Periodic functions comonotone approximation trigonometric polynomials Jackson-type estimates.
-
Stechkin-Type Estimate for Nearly Copositive Approximations of Periodic Functions
Dzyubenko, G. A.
Ukrainian Mathematical Journal, Vol. 72 (2020), Iss. 5 P.722
https://doi.org/10.1007/s11253-020-01812-y [Citations: 0] -
Almost Coconvex Approximation of Continuous Periodic Functions
Dzyubenko, G. A.
Ukrainian Mathematical Journal, Vol. 71 (2019), Iss. 3 P.402
https://doi.org/10.1007/s11253-019-01654-3 [Citations: 2] -
Оцінка Стєчкіна для майже копозитивного наближення періодичних функцій
Dzyubenko, G. A.
Ukrains’kyi Matematychnyi Zhurnal, Vol. 72 (2020), Iss. 5
https://doi.org/10.37863/umzh.v72i5.1127 [Citations: 0] -
Degree of nearly comonotone approximation of periodic functions
Dzyubenko, German
Asian-European Journal of Mathematics, Vol. 16 (2023), Iss. 11
https://doi.org/10.1142/S1793557123502005 [Citations: 0]