Some Sharpening and Generalizations of a Result of T. J. Rivlin

Some Sharpening and Generalizations of a Result of T. J. Rivlin

Year:    2017

Analysis in Theory and Applications, Vol. 33 (2017), Iss. 3 : pp. 219–228

Abstract

Let $p(z)=a_0+a_1z+a_2z^2+a_3z^3+\cdots+a_nz^n$ be a polynomial of degree $n$. Rivlin [12] proved that if $p(z)\neq 0$ in the unit disk, then for $0< r\leq 1,$ $${\max_{|z|=r}|p(z)|}\geq \Big(\dfrac{r+1}{2}\Big)^n{\max_{|z|=1}|p(z)|}.$$ In this paper, we prove a sharpening and generalization of this result and show by means of examples that for some polynomials our result can significantly improve the bound obtained by the Rivlin's Theorem.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/ata.2017.v33.n3.3

Analysis in Theory and Applications, Vol. 33 (2017), Iss. 3 : pp. 219–228

Published online:    2017-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    10

Keywords:    Inequalities polynomials zeros.

  1. Extremal Problems and Inequalities of Markov-Bernstein Type for Algebraic Polynomial

    Bibliography

    2022

    https://doi.org/10.1016/B978-0-12-811988-4.00014-1 [Citations: 0]
  2. Extremal Problems and Inequalities of Markov-Bernstein Type for Algebraic Polynomial

    Different types of Bernstein inequalities

    Gardner, Robert B. | Govil, Narendra K. | Milovanović, Gradimir V. | Rassias, Themistocles M.

    2022

    https://doi.org/10.1016/B978-0-12-811988-4.00009-8 [Citations: 0]
  3. Improvement and generalization of polynomial inequality of T. J. Rivlin

    Devi, Maisnam Triveni | Singh, Thangjam Birkramjit | Chanam, Barchand

    São Paulo Journal of Mathematical Sciences, Vol. 17 (2023), Iss. 2 P.1006

    https://doi.org/10.1007/s40863-022-00300-4 [Citations: 0]