On the Green Function of the Annulus

On the Green Function of the Annulus

Year:    2016

Author:    M. Grossi, D. Vujadinović

Analysis in Theory and Applications, Vol. 32 (2016), Iss. 1 : pp. 52–64

Abstract

Using the Gegenbauer polynomials and the zonal harmonics functions we give some representation formulae of the Green function in the annulus. We apply this result to prove some uniqueness results for some nonlinear elliptic problems.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/ata.2016.v32.n1.5

Analysis in Theory and Applications, Vol. 32 (2016), Iss. 1 : pp. 52–64

Published online:    2016-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    13

Keywords:    Green's function symmetries uniqueness.

Author Details

M. Grossi

D. Vujadinović

  1. Multispike solutions for the Brezis–Nirenberg problem in dimension three

    Musso, Monica | Salazar, Dora

    Journal of Differential Equations, Vol. 264 (2018), Iss. 11 P.6663

    https://doi.org/10.1016/j.jde.2018.01.046 [Citations: 6]
  2. Green Function and Poisson Kernel Associated to Root Systems for Annular Regions

    Rejeb, Chaabane

    Potential Analysis, Vol. 55 (2021), Iss. 2 P.251

    https://doi.org/10.1007/s11118-020-09856-2 [Citations: 0]
  3. Harmonic functions which vanish on coaxial cylinders

    Gardiner, Stephen J. | Render, Hermann

    Journal d'Analyse Mathématique, Vol. 138 (2019), Iss. 2 P.891

    https://doi.org/10.1007/s11854-019-0050-6 [Citations: 4]
  4. Sign changing bubbling solutions for a critical Neumann problem in 3D

    Salazar, Dora

    Nonlinear Analysis, Vol. 188 (2019), Iss. P.500

    https://doi.org/10.1016/j.na.2019.06.018 [Citations: 1]