Commutators of Littlewood-Paley Operators on Herz Spaces with Variable Exponent

Commutators of Littlewood-Paley Operators on Herz Spaces with Variable Exponent

Year:    2016

Analysis in Theory and Applications, Vol. 32 (2016), Iss. 2 : pp. 149–163

Abstract

Let $\Omega\in L^2(\mathrm{S}^{n-1})$ be homogeneous function of degree zero and $b$ be BMO functions. In this paper, we obtain some boundedness of the Littlewood-Paley Operators and their higher-order commutators on Herz spaces with variable exponent.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/ata.2016.v32.n2.4

Analysis in Theory and Applications, Vol. 32 (2016), Iss. 2 : pp. 149–163

Published online:    2016-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    15

Keywords:    Herz space variable exponent commutator area integral Littlewood-Paley $g_\lambda^\ast$ function.