Variable Hardy Spaces on the Heisenberg Group

Variable Hardy Spaces on the Heisenberg Group

Year:    2016

Author:    Jingxuan Fang, Jiman Zhao

Analysis in Theory and Applications, Vol. 32 (2016), Iss. 3 : pp. 242–271

Abstract

We consider Hardy spaces with variable exponents defined by grand maximal function on the Heisenberg group. Then we introduce some equivalent characterizations of variable Hardy spaces. By using atomic decomposition and molecular decomposition we get the boundedness of singular integral operators on variable Hardy spaces. We investigate the Littlewood-Paley characterization by virtue of the boundedness of singular integral operators.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/ata.2016.v32.n3.4

Analysis in Theory and Applications, Vol. 32 (2016), Iss. 3 : pp. 242–271

Published online:    2016-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    30

Keywords:    Hardy spaces variable exponents Heisenberg group atomic decomposition Littlewood-Paley characterization.

Author Details

Jingxuan Fang

Jiman Zhao

  1. Convolution operators and variable Hardy spaces on the Heisenberg group

    Rocha, P.

    Acta Mathematica Hungarica, Vol. (2024), Iss.

    https://doi.org/10.1007/s10474-024-01484-1 [Citations: 0]
  2. Multilinear Hausdorff operators on weighted Herz and Morrey–Herz spaces with variable exponent

    Liu, Dongli | Zhao, Jiman

    Journal of Pseudo-Differential Operators and Applications, Vol. 13 (2022), Iss. 1

    https://doi.org/10.1007/s11868-021-00437-4 [Citations: 7]
  3. Rough Fractional Hausdorff Operators on Morrey–Herz Spaces with Variable Exponents

    Li, Ziwei | Zhao, Jiman

    Results in Mathematics, Vol. 79 (2024), Iss. 1

    https://doi.org/10.1007/s00025-023-02039-6 [Citations: 1]
  4. Rough Hausdorff operators on Lebesgue spaces with variable exponent

    Li, Ziwei | Zhao, Jiman

    Annals of Functional Analysis, Vol. 14 (2023), Iss. 4

    https://doi.org/10.1007/s43034-023-00293-x [Citations: 0]
  5. Abstract Hardy spaces with variable exponents

    Liu, Yin | Zhao, Jiman

    Nonlinear Analysis, Vol. 167 (2018), Iss. P.29

    https://doi.org/10.1016/j.na.2017.10.011 [Citations: 9]