Year: 2015
Analysis in Theory and Applications, Vol. 31 (2015), Iss. 3 : pp. 307–320
Abstract
In this paper some approximation formulae for a class of convolution type double singular integral operators depending on three parameters of the type $$( T_{\lambda }f) ( x,y)=\int_{a}^{b}\int_{a}^{b}f(t,s) K_{\lambda}(t-x,s-y) dsdt, \quad x,y\in (a,b), \quad \lambda \in \Lambda \subset[ 0,\infty ), $$ are given. Here $f$ belongs to the function space $L_{1}( \langle a,b\rangle ^{2}),$ where $\langle a,b\rangle $ is an arbitrary interval in $\mathbb{R}$. In this paper three theorems are proved, one for existence of the operator $( T_{\lambda }f)( x,y) $ and the others for its Fatou-type pointwise convergence to $f(x_{0},y_{0}),$ as $(x,y,\lambda )$ tends to $(x_{0},y_{0},\lambda_{0}).$ In contrast to previous works, the kernel functions $K_{\lambda}(u,v)$ don't have to be $2\pi$-periodic, positive, even and radial. Our results improve and extend some of the previous results of [1,6,8,10,11,13] in three dimensional frame and especially the very recent paper [15].
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/ata.2015.v31.n3.8
Analysis in Theory and Applications, Vol. 31 (2015), Iss. 3 : pp. 307–320
Published online: 2015-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 14
Keywords: Fatou-type convergence convolution type double singular integral operators $\mu$-generalized Lebesgue point.
-
Applied Mathematical Analysis: Theory, Methods, and Applications
On Weighted Convergence of Double Singular Integral Operators Involving Summation
Uysal, Gümrah | Dutta, Hemen2020
https://doi.org/10.1007/978-3-319-99918-0_18 [Citations: 0] -
Weighted approximation by double singular integral operators with radially defined kernels
Uysal, Gumrah | Ibikli, ErtanMathematical Sciences, Vol. 10 (2016), Iss. 4 P.149
https://doi.org/10.1007/s40096-016-0189-6 [Citations: 2] -
A new approach to nonlinear singular integral operators depending on three parameters
Uysal, Gumrah
Open Mathematics, Vol. 14 (2016), Iss. 1 P.897
https://doi.org/10.1515/math-2016-0081 [Citations: 0]