Boundedness of Multilinear Oscillatory Singular Integral on Weighted Weak Hardy Spaces

Boundedness of Multilinear Oscillatory Singular Integral on Weighted Weak Hardy Spaces

Year:    2015

Author:    Yali Pan, Changwen Li

Analysis in Theory and Applications, Vol. 31 (2015), Iss. 4 : pp. 373–380

Abstract

In this paper, by using the atomic decomposition of the weighted weak Hardy space $WH_\omega^1(\mathbb{R}^n)$, the authors discuss a class of multilinear oscillatory singular integrals and obtain their boundedness from the weighted weak Hardy space $WH_\omega^1(\mathbb{R}^n)$ to the weighted weak Lebesgue space $WL_\omega^1(\mathbb{R}^n)$ for $\omega\in A_1(\mathbb{R}^n)$.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/ata.2015.v31.n4.3

Analysis in Theory and Applications, Vol. 31 (2015), Iss. 4 : pp. 373–380

Published online:    2015-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    8

Keywords:    Multilinear oscillatory singular integral $A_1(\mathbb{R}^n)$ weighted weak Hardy space.

Author Details

Yali Pan

Changwen Li