Approximation of the Cubic Functional Equations in Lipschitz Spaces

Approximation of the Cubic Functional Equations in Lipschitz Spaces

Year:    2014

Analysis in Theory and Applications, Vol. 30 (2014), Iss. 4 : pp. 354–362

Abstract

Let $\mathcal{G}$ be an Abelian group and let $\rho:\mathcal{G} \times \mathcal{G} \rightarrow [0, \infty)$ be a metric on $\mathcal{G}$. Let $\varepsilon$ be a normed space. We prove that under some conditions if $f:\mathcal{G}\to\varepsilon$ is an odd function and $C_x:\mathcal{G}\to\varepsilon$ defined by $C_x(y):=2f(x+y)+2f(x-y)+12f(x)-$ $f(2x+y)-f(2x-y)$ is a cubic function for all $x\in \mathcal{G},$ then there exists a cubic function $C:\mathcal{G}\to\varepsilon$ such that $f-C$ is Lipschitz. Moreover, we investigate the stability of cubic functional equation $2f(x+y)+2f(x-y)+12f(x)-f(2x+y)$ $-f(2x-y)=0$ on Lipschitz spaces.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/ata.2014.v30.n4.2

Analysis in Theory and Applications, Vol. 30 (2014), Iss. 4 : pp. 354–362

Published online:    2014-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    9

Keywords:    Cubic functional equation Lipschitz space stability.

  1. Almost tri-cubic functions with Lipschitz condition

    Nikoufar, Ismail

    Tbilisi Mathematical Journal, Vol. 13 (2020), Iss. 2

    https://doi.org/10.32513/tbilisi/1593223228 [Citations: 0]
  2. Stability of Generalized Multi-quadratic Mappings in Lipschitz Spaces

    Dashti, Mahshid | Khodaei, Hamid

    Results in Mathematics, Vol. 74 (2019), Iss. 4

    https://doi.org/10.1007/s00025-019-1083-y [Citations: 7]
  3. LIPSCHITZ CRITERIA FOR BI-QUADRATIC FUNCTIONAL EQUATIONS

    Nikoufar, Ismail

    Communications of the Korean Mathematical Society, Vol. 31 (2016), Iss. 4 P.819

    https://doi.org/10.4134/CKMS.c150249 [Citations: 5]
  4. Stability of Multi-Quadratic Functions in Lipschitz Spaces

    Nikoufar, Ismail

    Iranian Journal of Science and Technology, Transactions A: Science, Vol. 43 (2019), Iss. 2 P.621

    https://doi.org/10.1007/s40995-017-0478-4 [Citations: 5]
  5. Behavior of Bi-Cubic Functions in Lipschitz Spaces

    Nikoufar, Ismail

    Lobachevskii Journal of Mathematics, Vol. 39 (2018), Iss. 6 P.803

    https://doi.org/10.1134/S1995080218060136 [Citations: 2]
  6. Erratum to: Quartic functional equations in Lipschitz spaces

    Nikoufar, Ismail

    Rendiconti del Circolo Matematico di Palermo (1952 -), Vol. 65 (2016), Iss. 2 P.345

    https://doi.org/10.1007/s12215-015-0222-x [Citations: 4]