Two Weighted $BMO$ Estimates for the Maximal Bochner-Riesz Commutator

Two Weighted $BMO$ Estimates for the Maximal Bochner-Riesz Commutator

Year:    2013

Author:    Dan Zou, Xiaoli Chen, Dongxiang Chen

Analysis in Theory and Applications, Vol. 29 (2013), Iss. 2 : pp. 120–127

Abstract

In this note, the author prove that maximal Bochner-Riesz commutator $B^b_{\delta,\ast}$ generated by operator $B_{\delta,\ast}$ and  function $b\in BMO(\omega)$ is a bounded operator from $L^{p}(\mu)$ into $L^{p}(\nu)$, where $\omega\in(\mu\nu^{-1})^{\frac{1}{p}},\mu,\nu\in A_p$ for $1 < p <\infty$. The proof relies heavily on the pointwise estimates for the sharp maximal function of the commutator $B^b_{\delta,\ast}$.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/ata.2013.v29.n2.3

Analysis in Theory and Applications, Vol. 29 (2013), Iss. 2 : pp. 120–127

Published online:    2013-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    8

Keywords:    Bochner-Riesz operator commutator weighted $BMO(\omega)$ space.

Author Details

Dan Zou

Xiaoli Chen

Dongxiang Chen