The Boundedness of Littlewood-Paley Operators with Rough Kernels on Weighted $(L^q, L^p)^{\alpha}(\mathbf{R}^n)$ Spaces

The Boundedness of Littlewood-Paley Operators with Rough Kernels on Weighted $(L^q, L^p)^{\alpha}(\mathbf{R}^n)$ Spaces

Year:    2013

Author:    X. M. Wei, S. P. Tao

Analysis in Theory and Applications, Vol. 29 (2013), Iss. 2 : pp. 135–148

Abstract

In this paper, we shall deal with the boundedness of the Littlewood-Paley operators with rough kernel. We prove the boundedness of the Lusin-area integral $\mu_{\Omega,s}$ and Littlewood-Paley functions $\mu_{\Omega}$ and $\mu^{*}_{\lambda}$ on the weighted amalgam spaces $(L^{q}_\omega,L^{p})^{\alpha}(\mathbf{R}^{n})$ as $1 < q\leq \alpha < p\leq \infty$.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/ata.2013.v29.n2.5

Analysis in Theory and Applications, Vol. 29 (2013), Iss. 2 : pp. 135–148

Published online:    2013-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    14

Keywords:    Littlewood-Paley operator weighted amalgam space rough kernel $A_p$ weight.

Author Details

X. M. Wei

S. P. Tao

  1. Parameterized Littlewood--Paley operators and their commutators on Herz spaces with variable exponents

    WANG, Lijuan | TAO, Shuangping

    TURKISH JOURNAL OF MATHEMATICS, Vol. 40 (2016), Iss. P.122

    https://doi.org/10.3906/mat-1412-52 [Citations: 12]
  2. Пространства типа Бургейна-Морри со структурой пространств Бесова

    Zhao, Yirui | Sawano, Yoshihiro | Tao, Jin | Yang, Dachun | Yuan, Wen

    Труды Математического института имени В. А. Стеклова, Vol. 323 (2023), Iss. P.252

    https://doi.org/10.4213/tm4355 [Citations: 0]
  3. Estimates for Fractional Integral Operators and Linear Commutators on Certain Weighted Amalgam Spaces

    Wang, Hua

    Journal of Function Spaces, Vol. 2020 (2020), Iss. P.1

    https://doi.org/10.1155/2020/2697104 [Citations: 3]
  4. On preduals and Köthe duals of some subspaces of Morrey spaces

    Diarra, Nouffou | Fofana, Ibrahim

    Journal of Mathematical Analysis and Applications, Vol. 496 (2021), Iss. 2 P.124842

    https://doi.org/10.1016/j.jmaa.2020.124842 [Citations: 3]
  5. Littlewood-Paley Operators on Morrey Spaces with Variable Exponent

    Tao, Shuangping | Wang, Lijuan

    The Scientific World Journal, Vol. 2014 (2014), Iss. P.1

    https://doi.org/10.1155/2014/790671 [Citations: 1]
  6. Boundedness of Littlewood-Paley operators and their commutators on Herz-Morrey spaces with variable exponent

    Wang, Lijuan | Tao, Shuangping

    Journal of Inequalities and Applications, Vol. 2014 (2014), Iss. 1

    https://doi.org/10.1186/1029-242X-2014-227 [Citations: 9]
  7. Norm Inequalities in Generalized Morrey Spaces

    Feuto, Justin

    Journal of Fourier Analysis and Applications, Vol. 20 (2014), Iss. 4 P.896

    https://doi.org/10.1007/s00041-014-9337-2 [Citations: 20]
  8. Bourgain–Morrey Spaces Mixed with Structure of Besov Spaces

    Zhao, Yirui | Sawano, Yoshihiro | Tao, Jin | Yang, Dachun | Yuan, Wen

    Proceedings of the Steklov Institute of Mathematics, Vol. 323 (2023), Iss. 1 P.244

    https://doi.org/10.1134/S0081543823050152 [Citations: 5]