Some New Type of Difference Sequence Spaces Defined by Modulus Function and Statistical Convergence

Some New Type of Difference Sequence Spaces Defined by Modulus Function and Statistical Convergence

Year:    2012

Analysis in Theory and Applications, Vol. 28 (2012), Iss. 1 : pp. 19–26

Abstract

In this article we introduce the difference sequence spaces $W_0[ f, \Delta m]$, $W_1[ f ,\Delta m]$,$W_\infty[ f ,\Delta m]$ and $S[f,\Delta m]$, defined by a modulus function $f$. We obtain a relation between $W_1[ f ,\Delta m]\cap l_\infty[ f ,\Delta m]$ and $S[ f ,\Delta m]\cap l_\infty[ f ,\Delta m]$ and prove some inclusion results.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/ata.2012.v28.n1.3

Analysis in Theory and Applications, Vol. 28 (2012), Iss. 1 : pp. 19–26

Published online:    2012-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    8

Keywords:    Strongly Cesàro summable sequence modulus function statistical convergence.