Weak Type Inequalities for Fractional Integral Operators on Generalized Non-Homogeneous Morrey Spaces

Weak Type Inequalities for Fractional Integral Operators on Generalized Non-Homogeneous Morrey Spaces

Year:    2012

Analysis in Theory and Applications, Vol. 28 (2012), Iss. 1 : pp. 65–72

Abstract

We obtain weak type $(1,q)$ inequalities for fractional integral operators on generalized non-homogeneous Morrey spaces. The proofs use some properties of maximal operators. Our results are closely related to the strong type inequalities in [13, 14, 15].

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/ata.2012.v28.n1.8

Analysis in Theory and Applications, Vol. 28 (2012), Iss. 1 : pp. 65–72

Published online:    2012-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    8

Keywords:    weak type inequality fractional integral operator (generalized) non-homogeneous Morrey space.

  1. Maximal and fractional integral operators on generalized Morrey spaces over metric measure spaces

    Sihwaningrum, Idha | Gunawan, Hendra | Nakai, Eiichi

    Mathematische Nachrichten, Vol. 291 (2018), Iss. 8-9 P.1400

    https://doi.org/10.1002/mana.201600350 [Citations: 11]
  2. Weak Type Inequalities for Some Integral Operators on Generalized Nonhomogeneous Morrey Spaces

    Gunawan, Hendra | Hakim, Denny Ivanal | Sawano, Yoshihiro | Sihwaningrum, Idha

    Journal of Function Spaces and Applications, Vol. 2013 (2013), Iss. P.1

    https://doi.org/10.1155/2013/809704 [Citations: 6]
  3. On the solutions of Caputo–Hadamard Pettis-type fractional differential equations

    Cichoń, Mieczysław | Salem, Hussein A. H.

    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, Vol. 113 (2019), Iss. 4 P.3031

    https://doi.org/10.1007/s13398-019-00671-y [Citations: 12]