Weak Type Inequalities for Fractional Integral Operators on Generalized Non-Homogeneous Morrey Spaces
Year: 2012
Analysis in Theory and Applications, Vol. 28 (2012), Iss. 1 : pp. 65–72
Abstract
We obtain weak type $(1,q)$ inequalities for fractional integral operators on generalized non-homogeneous Morrey spaces. The proofs use some properties of maximal operators. Our results are closely related to the strong type inequalities in [13, 14, 15].
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/ata.2012.v28.n1.8
Analysis in Theory and Applications, Vol. 28 (2012), Iss. 1 : pp. 65–72
Published online: 2012-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 8
Keywords: weak type inequality fractional integral operator (generalized) non-homogeneous Morrey space.
-
Maximal and fractional integral operators on generalized Morrey spaces over metric measure spaces
Sihwaningrum, Idha | Gunawan, Hendra | Nakai, EiichiMathematische Nachrichten, Vol. 291 (2018), Iss. 8-9 P.1400
https://doi.org/10.1002/mana.201600350 [Citations: 11] -
Weak Type Inequalities for Some Integral Operators on Generalized Nonhomogeneous Morrey Spaces
Gunawan, Hendra | Hakim, Denny Ivanal | Sawano, Yoshihiro | Sihwaningrum, IdhaJournal of Function Spaces and Applications, Vol. 2013 (2013), Iss. P.1
https://doi.org/10.1155/2013/809704 [Citations: 6] -
On the solutions of Caputo–Hadamard Pettis-type fractional differential equations
Cichoń, Mieczysław | Salem, Hussein A. H.Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, Vol. 113 (2019), Iss. 4 P.3031
https://doi.org/10.1007/s13398-019-00671-y [Citations: 12]