Boundedness of Parabolic Singular Integrals and Marcinkiewicz Integrals on Triebel-Lizorkin Spaces

Boundedness of Parabolic Singular Integrals and Marcinkiewicz Integrals on Triebel-Lizorkin Spaces

Year:    2011

Analysis in Theory and Applications, Vol. 27 (2011), Iss. 1 : pp. 59–75

Abstract

In this paper, we obtain the boundedness of the parabolic singular integral operator $T$ with kernel in $L(\log L)^{1/ \gamma} (S^{n−1})$ on Triebel-Lizorkin spaces. Moreover, we prove the boundedness of a class of Marcinkiewicz integrals $\mu_{\Omega,q}(f)$ from $\|f\|_{\dot{F}_{p}^{0,q}(\mathbf{R}^n)}$ into $L^p(\mathbf{R}^n)$.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.1007/s10496-011-0059-x

Analysis in Theory and Applications, Vol. 27 (2011), Iss. 1 : pp. 59–75

Published online:    2011-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    17

Keywords:    parabolic singular integral Triebel-Lizorkin space Marcinkiewica integral rough kernel.