On Approximation of Smooth Functions from Null Spaces of Optimal Linear Differential Operators with Constant Coefficients
Year: 2011
Analysis in Theory and Applications, Vol. 27 (2011), Iss. 2 : pp. 187–200
Abstract
For a real valued function $f$ defined on a finite interval $I$ we consider the problem of approximating $f$ from null spaces of differential operators of the form $L_n(\psi) =\sum\limits_{k=0}^{n}a_k\psi^{(k)}$, where the constant coefficients $a_k \in R$ may be adapted to $f$.
We prove that for each $f \in C^{(n)}(I)$, there is a selection of coefficients $\{a_1, \cdots,a_n\}$ and a corresponding linear combination$$S_n( f , t) =\sum_{k=1}^nb_k e^{\lambda_{k^t}}$$of functions $\psi_k(t) = e^{\lambda_kt}$ in the nullity of $L$ which satisfies the following Jackson’s type inequality: $$\|f^{(m)}-S_n^{(m)}(f,t)\|_{\infty}\le \frac{|I|^{1/q}e^{|\lambda_n||I|}}{|a_n|2^{n-m-1/p}|\lambda_n|^{n-m-1}}\|L_n(f)\|_p$$ where $|\lambda_n| = \max\limits_k |\lambda_k|$, $0 \leq m \leq n−1,$ $p,q \geq 1$, and $\frac{1}{p}+\frac{1}{q}= 1.$
For the particular operator $M_n( f ) = f +1/(2n)! f ^{(2n)}$ the rate of approximation by the eigenvalues of $M_n$ for non-periodic analytic functions on intervals of restricted length is established to be exponential. Applications in algorithms and numerical examples are discussed.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.1007/s10496-011-0187-3
Analysis in Theory and Applications, Vol. 27 (2011), Iss. 2 : pp. 187–200
Published online: 2011-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 14
Keywords: approximation of analytic function differential operator fundamental set of solutions.