Entropies and Symmetrization of Hyperbolic Stochastic Galerkin Formulations

Year:    2020

Author:    Stephan Gerster, Michael Herty

Communications in Computational Physics, Vol. 27 (2020), Iss. 3 : pp. 639–671

Abstract

Stochastic quantities of interest are expanded in generalized polynomial chaos expansions using stochastic Galerkin methods. An application of hyperbolic differential equations in general does not transfer hyperbolicity to the coefficients of the truncated series expansion. For the Haar basis and for piecewise linear multiwavelets we present convex entropies for the systems of coefficients of the one-dimensional shallow water equations by using the Roe variable transform. This allows to obtain hyperbolicity, well-posedness and energy estimates.

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.OA-2019-0047

Communications in Computational Physics, Vol. 27 (2020), Iss. 3 : pp. 639–671

Published online:    2020-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    33

Keywords:    Hyperbolic partial differential equations uncertainty quantification stochastic Galerkin shallow water equations well-posedness entropy Roe variable transform.

Author Details

Stephan Gerster

Michael Herty

  1. Turnpike properties of optimal boundary control problems with random linear hyperbolic systems

    Gugat, Martin | Herty, Michael

    ESAIM: Control, Optimisation and Calculus of Variations, Vol. 29 (2023), Iss. P.55

    https://doi.org/10.1051/cocv/2023051 [Citations: 1]
  2. Entropy-Conservative Discontinuous Galerkin Methods for the Shallow Water Equations with Uncertainty

    Bender, Janina | Öffner, Philipp

    Communications on Applied Mathematics and Computation, Vol. 6 (2024), Iss. 3 P.1978

    https://doi.org/10.1007/s42967-024-00369-y [Citations: 0]
  3. Hyperbolicity-preserving and well-balanced stochastic Galerkin method for two-dimensional shallow water equations

    Dai, Dihan | Epshteyn, Yekaterina | Narayan, Akil

    Journal of Computational Physics, Vol. 452 (2022), Iss. P.110901

    https://doi.org/10.1016/j.jcp.2021.110901 [Citations: 8]
  4. Cross-mode stabilized stochastic shallow water systems using stochastic finite element methods

    Chen, Chen | Dawson, Clint | Valseth, Eirik

    Computer Methods in Applied Mechanics and Engineering, Vol. 405 (2023), Iss. P.115873

    https://doi.org/10.1016/j.cma.2022.115873 [Citations: 2]
  5. DYNAMICAL LOW-RANK APPROXIMATION FOR BURGERS' EQUATION WITH UNCERTAINTY

    Kusch, Jonas | Ceruti, Gianluca | Einkemmer, Lukas | Frank, Martin

    International Journal for Uncertainty Quantification, Vol. 12 (2022), Iss. 5 P.1

    https://doi.org/10.1615/Int.J.UncertaintyQuantification.2022039345 [Citations: 9]
  6. Stabilization of Stochastic Fluctuations in Hyperbolic Systems

    Gerster, Stephan

    IFAC-PapersOnLine, Vol. 53 (2020), Iss. 2 P.7223

    https://doi.org/10.1016/j.ifacol.2020.12.554 [Citations: 0]
  7. Hyperbolicity-Preserving and Well-Balanced Stochastic Galerkin Method for Shallow Water Equations

    Dai, Dihan | Epshteyn, Yekaterina | Narayan, Akil

    SIAM Journal on Scientific Computing, Vol. 43 (2021), Iss. 2 P.A929

    https://doi.org/10.1137/20M1360736 [Citations: 9]
  8. Uncertainty quantification in hierarchical vehicular flow models

    Herty, Michael | Iacomini, Elisa

    Kinetic and Related Models, Vol. 15 (2022), Iss. 2 P.239

    https://doi.org/10.3934/krm.2022006 [Citations: 5]
  9. Energy stable and structure-preserving schemes for the stochastic Galerkin shallow water equations

    Dai, Dihan | Epshteyn, Yekaterina | Narayan, Akil

    ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 58 (2024), Iss. 2 P.723

    https://doi.org/10.1051/m2an/2024012 [Citations: 0]
  10. Efficient Implementation of Adaptive Order Reconstructions

    Semplice, M. | Visconti, G.

    Journal of Scientific Computing, Vol. 83 (2020), Iss. 1

    https://doi.org/10.1007/s10915-020-01156-6 [Citations: 13]
  11. Mathematical Challenges for the Theory of Hyperbolic Balance Laws in Fluid Mechanics: Complexity, Scales, Randomness

    Lukáčová-Medvid’ová, Mária | Rohde, Christian

    Jahresbericht der Deutschen Mathematiker-Vereinigung, Vol. (2024), Iss.

    https://doi.org/10.1365/s13291-024-00290-6 [Citations: 0]
  12. Semi-conservative high order scheme with numerical entropy indicator for intrusive formulations of hyperbolic systems

    Gerster, Stephan | Semplice, Matteo

    Journal of Computational Physics, Vol. 489 (2023), Iss. P.112254

    https://doi.org/10.1016/j.jcp.2023.112254 [Citations: 0]
  13. Entropy Stable Galerkin Methods with Suitable Quadrature Rules for Hyperbolic Systems with Random Inputs

    Zhong, Xinghui | Shu, Chi-Wang

    Journal of Scientific Computing, Vol. 92 (2022), Iss. 1

    https://doi.org/10.1007/s10915-022-01866-z [Citations: 5]
  14. Stability analysis of a hyperbolic stochastic Galerkin formulation for the Aw-Rascle-Zhang model with relaxation

    Gerster, Stephan | Herty, Michael | Iacomini, Elisa

    Mathematical Biosciences and Engineering, Vol. 18 (2021), Iss. 4 P.4372

    https://doi.org/10.3934/mbe.2021220 [Citations: 10]
  15. New High-Order Numerical Methods for Hyperbolic Systems of Nonlinear PDEs with Uncertainties

    Chertock, Alina | Herty, Michael | Iskhakov, Arsen S. | Janajra, Safa | Kurganov, Alexander | Lukáčová-Medvid’ová, Mária

    Communications on Applied Mathematics and Computation, Vol. 6 (2024), Iss. 3 P.2011

    https://doi.org/10.1007/s42967-024-00392-z [Citations: 0]