Deep Potential: A General Representation of a Many-Body Potential Energy Surface

Year:    2018

Communications in Computational Physics, Vol. 23 (2018), Iss. 3 : pp. 629–639

Abstract

We present a simple, yet general, deep neural network representation of the potential energy surface for atomic and molecular systems. It is "first-principle" based, in the sense that no ad hoc approximations or empirical fitting functions are required. When tested on a wide variety of examples, it reproduces the original model within chemical accuracy. This brings us one step closer to carrying out molecular simulations with quantum mechanics accuracy at empirical potential computational cost.

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.OA-2017-0213

Communications in Computational Physics, Vol. 23 (2018), Iss. 3 : pp. 629–639

Published online:    2018-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    11

Keywords:    Potential energy surface deep learning molecular simulation.

  1. Lattice Thermal Conductivity of Monolayer InSe Calculated by Machine Learning Potential

    Han, Jinsen | Zeng, Qiyu | Chen, Ke | Yu, Xiaoxiang | Dai, Jiayu

    Nanomaterials, Vol. 13 (2023), Iss. 9 P.1576

    https://doi.org/10.3390/nano13091576 [Citations: 8]
  2. Scientific discovery in the age of artificial intelligence

    Wang, Hanchen | Fu, Tianfan | Du, Yuanqi | Gao, Wenhao | Huang, Kexin | Liu, Ziming | Chandak, Payal | Liu, Shengchao | Van Katwyk, Peter | Deac, Andreea | Anandkumar, Anima | Bergen, Karianne | Gomes, Carla P. | Ho, Shirley | Kohli, Pushmeet | Lasenby, Joan | Leskovec, Jure | Liu, Tie-Yan | Manrai, Arjun | Marks, Debora | Ramsundar, Bharath | Song, Le | Sun, Jimeng | Tang, Jian | Veličković, Petar | Welling, Max | Zhang, Linfeng | Coley, Connor W. | Bengio, Yoshua | Zitnik, Marinka

    Nature, Vol. 620 (2023), Iss. 7972 P.47

    https://doi.org/10.1038/s41586-023-06221-2 [Citations: 416]
  3. Advances in the ocean-3 spectroscopy package

    Vinson, John

    Physical Chemistry Chemical Physics, Vol. 24 (2022), Iss. 21 P.12787

    https://doi.org/10.1039/D2CP01030E [Citations: 11]
  4. Domain structures and stacking sequences of Mg–Zn–Y long-period stacking ordered (LPSO) structures predicted by Deep-learning Potential

    Wang, Yi-Nan | Wang, Xiao-Yang | Jiang, Wan-Run | Wang, Han | Dai, Fu-Zhi

    Materials Today Communications, Vol. 38 (2024), Iss. P.108301

    https://doi.org/10.1016/j.mtcomm.2024.108301 [Citations: 0]
  5. A machine learning protocol for geometric information retrieval from molecular spectra

    Tao, Shijie | Feng, Yi | Wang, Wenmin | Han, Tiantian | Smith, Pieter E.S. | Jiang, Jun

    Artificial Intelligence Chemistry, Vol. 2 (2024), Iss. 1 P.100031

    https://doi.org/10.1016/j.aichem.2023.100031 [Citations: 0]
  6. Solidification of the glass-forming Al86Ni2Co6Gd6 melt under high pressure

    Menshikova, S.G. | Chtchelkatchev, N.М. | Brazhkin, V.V.

    Materialia, Vol. 28 (2023), Iss. P.101713

    https://doi.org/10.1016/j.mtla.2023.101713 [Citations: 3]
  7. Fast and Accurate Molecular Property Prediction: Learning Atomic Interactions and Potentials with Neural Networks

    Tsubaki, Masashi | Mizoguchi, Teruyasu

    The Journal of Physical Chemistry Letters, Vol. 9 (2018), Iss. 19 P.5733

    https://doi.org/10.1021/acs.jpclett.8b01837 [Citations: 21]
  8. Data-driven prediction of complex crystal structures of dense lithium

    Wang, Xiaoyang | Wang, Zhenyu | Gao, Pengyue | Zhang, Chengqian | Lv, Jian | Wang, Han | Liu, Haifeng | Wang, Yanchao | Ma, Yanming

    Nature Communications, Vol. 14 (2023), Iss. 1

    https://doi.org/10.1038/s41467-023-38650-y [Citations: 14]
  9. Revolutionizing physics: a comprehensive survey of machine learning applications

    Suresh, Rahul | Bishnoi, Hardik | Kuklin, Artem V. | Parikh, Atharva | Molokeev, Maxim | Harinarayanan, R. | Gharat, Sarvesh | Hiba, P.

    Frontiers in Physics, Vol. 12 (2024), Iss.

    https://doi.org/10.3389/fphy.2024.1322162 [Citations: 2]
  10. Predictive power of polynomial machine learning potentials for liquid states in 22 elemental systems

    Wakai, Hayato | Seko, Atsuto | Izuta, Hirosato | Nishiyama, Takayuki | Tanaka, Isao

    Physical Review B, Vol. 109 (2024), Iss. 21

    https://doi.org/10.1103/PhysRevB.109.214207 [Citations: 0]
  11. Aqueous solution chemistryin silicoand the role of data-driven approaches

    Banerjee, Debarshi | Azizi, Khatereh | Egan, Colin K. | Donkor, Edward Danquah | Malosso, Cesare | Pino, Solana Di | Mirón, Gonzalo Díaz | Stella, Martina | Sormani, Giulia | Hozana, Germaine Neza | Monti, Marta | Morzan, Uriel N. | Rodriguez, Alex | Cassone, Giuseppe | Jelic, Asja | Scherlis, Damian | Hassanali, Ali

    Chemical Physics Reviews, Vol. 5 (2024), Iss. 2

    https://doi.org/10.1063/5.0207567 [Citations: 1]
  12. SwitchNet: A Neural Network Model for Forward and Inverse Scattering Problems

    Khoo, Yuehaw | Ying, Lexing

    SIAM Journal on Scientific Computing, Vol. 41 (2019), Iss. 5 P.A3182

    https://doi.org/10.1137/18M1222399 [Citations: 67]
  13. Large-scale atomistic simulation of dislocation core structure in face-centered cubic metal with Deep Potential method

    Deng, Fenglin | Wu, Hongyu | He, Ri | Yang, Peijun | Zhong, Zhicheng

    Computational Materials Science, Vol. 218 (2023), Iss. P.111941

    https://doi.org/10.1016/j.commatsci.2022.111941 [Citations: 2]
  14. From Graphene Oxide to Graphene: Changes in Interfacial Water Structure and Reactivity Using Deep Neural Network Force Fields

    Azom, Golam | Milet, Anne | David, Rolf | Kumar, Revati

    The Journal of Physical Chemistry C, Vol. 128 (2024), Iss. 39 P.16437

    https://doi.org/10.1021/acs.jpcc.4c03444 [Citations: 1]
  15. A Deep Potential model for liquid–vapor equilibrium and cavitation rates of water

    Sanchez-Burgos, Ignacio | Muniz, Maria Carolina | Espinosa, Jorge R. | Panagiotopoulos, Athanassios Z.

    The Journal of Chemical Physics, Vol. 158 (2023), Iss. 18

    https://doi.org/10.1063/5.0144500 [Citations: 14]
  16. DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models

    Zhang, Yuzhi | Wang, Haidi | Chen, Weijie | Zeng, Jinzhe | Zhang, Linfeng | Wang, Han | E, Weinan

    Computer Physics Communications, Vol. 253 (2020), Iss. P.107206

    https://doi.org/10.1016/j.cpc.2020.107206 [Citations: 417]
  17. Global Neural Network Potential with Explicit Many-Body Functions for Improved Descriptions of Complex Potential Energy Surface

    Kang, Pei-Lin | Yang, Zheng-Xin | Shang, Cheng | Liu, Zhi-Pan

    Journal of Chemical Theory and Computation, Vol. 19 (2023), Iss. 21 P.7972

    https://doi.org/10.1021/acs.jctc.3c00873 [Citations: 8]
  18. An equivariant neural operator for developing nonlocal tensorial constitutive models

    Han, Jiequn | Zhou, Xu-Hui | Xiao, Heng

    Journal of Computational Physics, Vol. 488 (2023), Iss. P.112243

    https://doi.org/10.1016/j.jcp.2023.112243 [Citations: 1]
  19. Simulation studies of the stability and growth kinetics of Pt-Sn phases using a machine learning interatomic potential

    Shi, Guo-Yong | Sun, Huai-Jun | Wang, Song-You | Jiang, Hong | Zhang, Chao | Zhang, Feng | Ho, Kai-Ming | Wang, Cai-Zhuang

    Computational Materials Science, Vol. 229 (2023), Iss. P.112388

    https://doi.org/10.1016/j.commatsci.2023.112388 [Citations: 0]
  20. SAIBench: Benchmarking AI for Science

    Li, Yatao | Zhan, Jianfeng

    BenchCouncil Transactions on Benchmarks, Standards and Evaluations, Vol. 2 (2022), Iss. 2 P.100063

    https://doi.org/10.1016/j.tbench.2022.100063 [Citations: 5]
  21. Synthesis of computer simulation and machine learning for achieving the best material properties of filled rubber

    Kojima, Takashi | Washio, Takashi | Hara, Satoshi | Koishi, Masataka

    Scientific Reports, Vol. 10 (2020), Iss. 1

    https://doi.org/10.1038/s41598-020-75038-0 [Citations: 12]
  22. Application of machine learning potentials to predict grain boundary properties in fcc elemental metals

    Nishiyama, Takayuki | Seko, Atsuto | Tanaka, Isao

    Physical Review Materials, Vol. 4 (2020), Iss. 12

    https://doi.org/10.1103/PhysRevMaterials.4.123607 [Citations: 26]
  23. Deep Learning for Nonadiabatic Excited-State Dynamics

    Chen, Wen-Kai | Liu, Xiang-Yang | Fang, Wei-Hai | Dral, Pavlo O. | Cui, Ganglong

    The Journal of Physical Chemistry Letters, Vol. 9 (2018), Iss. 23 P.6702

    https://doi.org/10.1021/acs.jpclett.8b03026 [Citations: 135]
  24. Understanding the sluggish and highly variable transport kinetics of lithium ions in LiFePO4

    Hu, Youcheng | Wang, Xiaoxiao | Li, Peng | Chen, Junxiang | Chen, Shengli

    Science China Chemistry, Vol. 66 (2023), Iss. 11 P.3297

    https://doi.org/10.1007/s11426-023-1662-9 [Citations: 1]
  25. Accurate Fe–He machine learning potential for studying He effects in BCC-Fe

    Pitike, Krishna Chaitanya | Setyawan, Wahyu

    Journal of Nuclear Materials, Vol. 574 (2023), Iss. P.154183

    https://doi.org/10.1016/j.jnucmat.2022.154183 [Citations: 6]
  26. Machine learning phase space quantum dynamics approaches

    Liu, Xinzijian | Zhang, Linfeng | Liu, Jian

    The Journal of Chemical Physics, Vol. 154 (2021), Iss. 18

    https://doi.org/10.1063/5.0046689 [Citations: 10]
  27. Machine learning potentials for multicomponent systems: The Ti-Al binary system

    Seko, Atsuto

    Physical Review B, Vol. 102 (2020), Iss. 17

    https://doi.org/10.1103/PhysRevB.102.174104 [Citations: 27]
  28. Faster exact exchange in periodic systems using single-precision arithmetic

    Vinson, John

    The Journal of Chemical Physics, Vol. 153 (2020), Iss. 20

    https://doi.org/10.1063/5.0030493 [Citations: 10]
  29. Combining Machine Learning and Computational Chemistry for Predictive Insights Into Chemical Systems

    Keith, John A. | Vassilev-Galindo, Valentin | Cheng, Bingqing | Chmiela, Stefan | Gastegger, Michael | Müller, Klaus-Robert | Tkatchenko, Alexandre

    Chemical Reviews, Vol. 121 (2021), Iss. 16 P.9816

    https://doi.org/10.1021/acs.chemrev.1c00107 [Citations: 406]
  30. Formation and Dynamics of Imidazole Supramolecular Chains Investigated by Deep Potential Molecular Dynamics Simulation

    Zhang, Jianwei | Lei, Jinyu | Feng, Pu | Chen, Wenduo | Zhou, Jiajia | Zhang, Guangzhao

    Langmuir, Vol. 40 (2024), Iss. 45 P.23864

    https://doi.org/10.1021/acs.langmuir.4c02888 [Citations: 0]
  31. Extended Lagrangian Born–Oppenheimer molecular dynamics: from density functional theory to charge relaxation models

    Niklasson, Anders M. N.

    The European Physical Journal B, Vol. 94 (2021), Iss. 8

    https://doi.org/10.1140/epjb/s10051-021-00151-6 [Citations: 7]
  32. DeePCG: Constructing coarse-grained models via deep neural networks

    Zhang, Linfeng | Han, Jiequn | Wang, Han | Car, Roberto | E, Weinan

    The Journal of Chemical Physics, Vol. 149 (2018), Iss. 3

    https://doi.org/10.1063/1.5027645 [Citations: 157]
  33. Learned Reconstruction of Protein Folding Trajectories from Noisy Single-Molecule Time Series

    Topel, Maximilian | Ejaz, Ayesha | Squires, Allison | Ferguson, Andrew L.

    Journal of Chemical Theory and Computation, Vol. 19 (2023), Iss. 14 P.4654

    https://doi.org/10.1021/acs.jctc.2c00920 [Citations: 1]
  34. Complex reaction processes in combustion unraveled by neural network-based molecular dynamics simulation

    Zeng, Jinzhe | Cao, Liqun | Xu, Mingyuan | Zhu, Tong | Zhang, John Z. H.

    Nature Communications, Vol. 11 (2020), Iss. 1

    https://doi.org/10.1038/s41467-020-19497-z [Citations: 142]
  35. Temperature- and vacancy-concentration-dependence of heat transport in Li3ClO from multi-method numerical simulations

    Pegolo, Paolo | Baroni, Stefano | Grasselli, Federico

    npj Computational Materials, Vol. 8 (2022), Iss. 1

    https://doi.org/10.1038/s41524-021-00693-4 [Citations: 22]
  36. Raman spectrum and polarizability of liquid water from deep neural networks

    Sommers, Grace M. | Calegari Andrade, Marcos F. | Zhang, Linfeng | Wang, Han | Car, Roberto

    Physical Chemistry Chemical Physics, Vol. 22 (2020), Iss. 19 P.10592

    https://doi.org/10.1039/D0CP01893G [Citations: 107]
  37. Deep potentials for materials science

    Wen, Tongqi | Zhang, Linfeng | Wang, Han | E, Weinan | Srolovitz, David J

    Materials Futures, Vol. 1 (2022), Iss. 2 P.022601

    https://doi.org/10.1088/2752-5724/ac681d [Citations: 101]
  38. Neural Network Potentials: A Concise Overview of Methods

    Kocer, Emir | Ko, Tsz Wai | Behler, Jörg

    Annual Review of Physical Chemistry, Vol. 73 (2022), Iss. 1 P.163

    https://doi.org/10.1146/annurev-physchem-082720-034254 [Citations: 127]
  39. Developing Potential Energy Surfaces for Graphene-Based 2D–3D Interfaces From Modified High-Dimensional Neural Networks for Applications in Energy Storage

    Sharma, Vidushi | Datta, Dibakar

    Journal of Electrochemical Energy Conversion and Storage, Vol. 19 (2022), Iss. 4

    https://doi.org/10.1115/1.4054781 [Citations: 4]
  40. Accurate and efficient molecular dynamics based on machine learning and non von Neumann architecture

    Mo, Pinghui | Li, Chang | Zhao, Dan | Zhang, Yujia | Shi, Mengchao | Li, Junhua | Liu, Jie

    npj Computational Materials, Vol. 8 (2022), Iss. 1

    https://doi.org/10.1038/s41524-022-00773-z [Citations: 19]
  41. Anisotropic molecular coarse-graining by force and torque matching with neural networks

    Wilson, Marltan O. | Huang, David M.

    The Journal of Chemical Physics, Vol. 159 (2023), Iss. 2

    https://doi.org/10.1063/5.0143724 [Citations: 6]
  42. Computing infrastructure construction and optimization for high-performance computing and artificial intelligence

    Su, Yun | Zhou, Jipeng | Ying, Jiangyong | Zhou, Mingyao | Zhou, Bin

    CCF Transactions on High Performance Computing, Vol. 3 (2021), Iss. 4 P.331

    https://doi.org/10.1007/s42514-021-00080-x [Citations: 5]
  43. Classical and machine learning interatomic potentials for BCC vanadium

    Wang, Rui | Ma, Xiaoxiao | Zhang, Linfeng | Wang, Han | Srolovitz, David J. | Wen, Tongqi | Wu, Zhaoxuan

    Physical Review Materials, Vol. 6 (2022), Iss. 11

    https://doi.org/10.1103/PhysRevMaterials.6.113603 [Citations: 9]
  44. i-PI 3.0: A flexible and efficient framework for advanced atomistic simulations

    Litman, Yair | Kapil, Venkat | Feldman, Yotam M. Y. | Tisi, Davide | Begušić, Tomislav | Fidanyan, Karen | Fraux, Guillaume | Higer, Jacob | Kellner, Matthias | Li, Tao E. | Pós, Eszter S. | Stocco, Elia | Trenins, George | Hirshberg, Barak | Rossi, Mariana | Ceriotti, Michele

    The Journal of Chemical Physics, Vol. 161 (2024), Iss. 6

    https://doi.org/10.1063/5.0215869 [Citations: 1]
  45. Combining Machine Learning Potential and Structure Prediction for Accelerated Materials Design and Discovery

    Tong, Qunchao | Gao, Pengyue | Liu, Hanyu | Xie, Yu | Lv, Jian | Wang, Yanchao | Zhao, Jijun

    The Journal of Physical Chemistry Letters, Vol. 11 (2020), Iss. 20 P.8710

    https://doi.org/10.1021/acs.jpclett.0c02357 [Citations: 64]
  46. Adaptive coupling of a deep neural network potential to a classical force field

    Zhang, Linfeng | Wang, Han | E, Weinan

    The Journal of Chemical Physics, Vol. 149 (2018), Iss. 15

    https://doi.org/10.1063/1.5042714 [Citations: 13]
  47. Band alignment of CoO(100)–water and CoO(111)–water interfaces accelerated by machine learning potentials

    Hu, Jin-Yuan | Zhuang, Yong-Bin | Cheng, Jun

    The Journal of Chemical Physics, Vol. 161 (2024), Iss. 13

    https://doi.org/10.1063/5.0224137 [Citations: 0]
  48. Stable Solid Molecular Hydrogen above 900 K from a Machine-Learned Potential Trained with Diffusion Quantum Monte Carlo

    Niu, Hongwei | Yang, Yubo | Jensen, Scott | Holzmann, Markus | Pierleoni, Carlo | Ceperley, David M.

    Physical Review Letters, Vol. 130 (2023), Iss. 7

    https://doi.org/10.1103/PhysRevLett.130.076102 [Citations: 17]
  49. Mitigating amorphization in superhard boron carbide by microalloying-induced stacking fault formation

    An, Qi

    Physical Review Materials, Vol. 5 (2021), Iss. 10

    https://doi.org/10.1103/PhysRevMaterials.5.103602 [Citations: 8]
  50. Pushing the Limit of Molecular Dynamics with Ab Initio Accuracy to 100 Million Atoms with Machine Learning

    Jia, Weile | Wang, Han | Chen, Mohan | Lu, Denghui | Lin, Lin | Car, Roberto | Weinan, E | Zhang, Linfeng

    SC20: International Conference for High Performance Computing, Networking, Storage and Analysis, (2020), P.1

    https://doi.org/10.1109/SC41405.2020.00009 [Citations: 86]
  51. Towards a new paradigm in intelligence-driven computational fluid dynamics simulations

    Chen, Xinhai | Wang, Zhichao | Deng, Liang | Yan, Junjun | Gong, Chunye | Yang, Bo | Wang, Qinglin | Zhang, Qingyang | Yang, Lihua | Pang, Yufei | Liu, Jie

    Engineering Applications of Computational Fluid Mechanics, Vol. 18 (2024), Iss. 1

    https://doi.org/10.1080/19942060.2024.2407005 [Citations: 0]
  52. Deep learning interatomic potential for thermal and defect behaviour of aluminum nitride with quantum accuracy

    Li, Tao | Hou, Qing | Cui, Jie-chao | Yang, Jia-hui | Xu, Ben | Li, Min | Wang, Jun | Fu, Bao-qin

    Computational Materials Science, Vol. 232 (2024), Iss. P.112656

    https://doi.org/10.1016/j.commatsci.2023.112656 [Citations: 3]
  53. Deep potential molecular dynamics on the microstructure and thermodynamic properties of FLiNaK–ThF<sub>4</sub>

    Yin, Wanqiu | Bo, Tao | Zhao, Yubao | Zhang, Lei | Chai, Zhifang | Shi, Weiqun

    SCIENTIA SINICA Chimica, Vol. 53 (2023), Iss. 6 P.1008

    https://doi.org/10.1360/SSC-2023-0050 [Citations: 1]
  54. Molecular dynamics simulations of lanthanum chloride by deep learning potential

    Feng, Taixi | Zhao, Jia | Liang, Wenshuo | Lu, Guimin

    Computational Materials Science, Vol. 210 (2022), Iss. P.111014

    https://doi.org/10.1016/j.commatsci.2021.111014 [Citations: 22]
  55. Active learning of uniformly accurate interatomic potentials for materials simulation

    Zhang, Linfeng | Lin, De-Ye | Wang, Han | Car, Roberto | E, Weinan

    Physical Review Materials, Vol. 3 (2019), Iss. 2

    https://doi.org/10.1103/PhysRevMaterials.3.023804 [Citations: 350]
  56. Group-theoretical high-order rotational invariants for structural representations: Application to linearized machine learning interatomic potential

    Seko, Atsuto | Togo, Atsushi | Tanaka, Isao

    Physical Review B, Vol. 99 (2019), Iss. 21

    https://doi.org/10.1103/PhysRevB.99.214108 [Citations: 36]
  57. Mechanistic Insights into Enzyme Catalysis from Explaining Machine-Learned Quantum Mechanical and Molecular Mechanical Minimum Energy Pathways

    Song, Zilin | Trozzi, Francesco | Tian, Hao | Yin, Chao | Tao, Peng

    ACS Physical Chemistry Au, Vol. 2 (2022), Iss. 4 P.316

    https://doi.org/10.1021/acsphyschemau.2c00005 [Citations: 10]
  58. The Middle Science: Traversing Scale In Complex Many-Body Systems

    Clark, Aurora E. | Adams, Henry | Hernandez, Rigoberto | Krylov, Anna I. | Niklasson, Anders M. N. | Sarupria, Sapna | Wang, Yusu | Wild, Stefan M. | Yang, Qian

    ACS Central Science, Vol. 7 (2021), Iss. 8 P.1271

    https://doi.org/10.1021/acscentsci.1c00685 [Citations: 20]
  59. Investigations of water/oxide interfaces by molecular dynamics simulations

    Wang, Ruiyu | Klein, Michael L. | Carnevale, Vincenzo | Borguet, Eric

    WIREs Computational Molecular Science, Vol. 11 (2021), Iss. 6

    https://doi.org/10.1002/wcms.1537 [Citations: 26]
  60. Overcoming the barrier of orbital-free density functional theory for molecular systems using deep learning

    Zhang, He | Liu, Siyuan | You, Jiacheng | Liu, Chang | Zheng, Shuxin | Lu, Ziheng | Wang, Tong | Zheng, Nanning | Shao, Bin

    Nature Computational Science, Vol. 4 (2024), Iss. 3 P.210

    https://doi.org/10.1038/s43588-024-00605-8 [Citations: 7]
  61. Analysis on Microstructure–Property Linkages of Filled Rubber Using Machine Learning and Molecular Dynamics Simulations

    Kojima, Takashi | Washio, Takashi | Hara, Satoshi | Koishi, Masataka | Amino, Naoya

    Polymers, Vol. 13 (2021), Iss. 16 P.2683

    https://doi.org/10.3390/polym13162683 [Citations: 3]
  62. Unusual dynamics of tetrahedral liquids caused by the competition between dynamic heterogeneity and structural heterogeneity

    Lee, Shao-Chun | Z, Y

    The Journal of Chemical Physics, Vol. 161 (2024), Iss. 4

    https://doi.org/10.1063/5.0215370 [Citations: 1]
  63. 34th European Symposium on Computer Aided Process Engineering / 15th International Symposium on Process Systems Engineering

    A deep learning-based energy and force prediction framework for high-throughput quantum chemistry calculations

    Wu, Guoxin | Liu, Qilei | Du, Jian | Meng, Qingwei | Zhang, Lei

    2024

    https://doi.org/10.1016/B978-0-443-28824-1.50120-4 [Citations: 0]
  64. Predicting Molecular Energy Using Force-Field Optimized Geometries and Atomic Vector Representations Learned from an Improved Deep Tensor Neural Network

    Lu, Jianing | Wang, Cheng | Zhang, Yingkai

    Journal of Chemical Theory and Computation, Vol. 15 (2019), Iss. 7 P.4113

    https://doi.org/10.1021/acs.jctc.9b00001 [Citations: 28]
  65. Overview Frequency Principle/Spectral Bias in Deep Learning

    Xu, Zhi-Qin John | Zhang, Yaoyu | Luo, Tao

    Communications on Applied Mathematics and Computation, Vol. (2024), Iss.

    https://doi.org/10.1007/s42967-024-00398-7 [Citations: 2]
  66. Study of high-pressure thermophysical properties of orthocarbonate Sr3CO5 using deep learning molecular dynamics simulations

    Wang, Xin-Xuan | Song, Ting | Lei, Zhen-Shuai | Sun, Xiao-Wei | Tian, Jun-Hong | Liu, Zi-Jiang

    Physical Chemistry Chemical Physics, Vol. 26 (2024), Iss. 7 P.6351

    https://doi.org/10.1039/D3CP04833K [Citations: 2]
  67. Prediction on local structure and properties of LiCl-KCl-AlCl3 ternary molten salt with deep learning potential

    Bu, Min | Feng, Taixi | Lu, Guimin

    Journal of Molecular Liquids, Vol. 375 (2023), Iss. P.120689

    https://doi.org/10.1016/j.molliq.2022.120689 [Citations: 18]
  68. Development of a multi-element neural network modified lattice inversion potential and application to the Ta-He system

    Wu, Feifeng | Duan, Xianbao | Wang, Zhaojie | Wen, Yanwei | Chen, Rong | Zhang, Aimin | Shan, Bin

    Computational Materials Science, Vol. 237 (2024), Iss. P.112899

    https://doi.org/10.1016/j.commatsci.2024.112899 [Citations: 0]
  69. Toward High-level Machine Learning Potential for Water Based on Quantum Fragmentation and Neural Networks

    Liu, Jinfeng | Lan, Jinggang | He, Xiao

    The Journal of Physical Chemistry A, Vol. 126 (2022), Iss. 24 P.3926

    https://doi.org/10.1021/acs.jpca.2c00601 [Citations: 22]
  70. Enabling Large-Scale Condensed-Phase Hybrid Density Functional Theory Based Ab Initio Molecular Dynamics. 1. Theory, Algorithm, and Performance

    Ko, Hsin-Yu | Jia, Junteng | Santra, Biswajit | Wu, Xifan | Car, Roberto | DiStasio Jr., Robert A.

    Journal of Chemical Theory and Computation, Vol. 16 (2020), Iss. 6 P.3757

    https://doi.org/10.1021/acs.jctc.9b01167 [Citations: 41]
  71. Exploring the Effects of Ionic Defects on the Stability of CsPbI3 with a Deep Learning Potential

    Yang, Weijie | Li, Jiajia | Chen, Xuelu | Feng, Yajun | Wu, Chongchong | Gates, Ian D. | Gao, Zhengyang | Ding, Xunlei | Yao, Jianxi | Li, Hao

    ChemPhysChem, Vol. 23 (2022), Iss. 7

    https://doi.org/10.1002/cphc.202100841 [Citations: 10]
  72. Accurate Deep Potential model for the Al–Cu–Mg alloy in the full concentration space*

    Jiang, Wanrun | Zhang, Yuzhi | Zhang, Linfeng | Wang, Han

    Chinese Physics B, Vol. 30 (2021), Iss. 5 P.050706

    https://doi.org/10.1088/1674-1056/abf134 [Citations: 38]
  73. Exploring the mechanism of plastic deformation in BCC Mg-Li-Al alloys via Machine learning Molecular dynamics simulations

    Zhang, Gaoshang | Mei, Wei | Zhang, Wentao | Yu, Kuang

    Computational Materials Science, Vol. 246 (2025), Iss. P.113396

    https://doi.org/10.1016/j.commatsci.2024.113396 [Citations: 0]
  74. Warm dense matter simulation via electron temperature dependent deep potential molecular dynamics

    Zhang, Yuzhi | Gao, Chang | Liu, Qianrui | Zhang, Linfeng | Wang, Han | Chen, Mohan

    Physics of Plasmas, Vol. 27 (2020), Iss. 12

    https://doi.org/10.1063/5.0023265 [Citations: 26]
  75. Reconstruction of protein structures from single-molecule time series

    Topel, Maximilian | Ferguson, Andrew L.

    The Journal of Chemical Physics, Vol. 153 (2020), Iss. 19

    https://doi.org/10.1063/5.0024732 [Citations: 6]
  76. Fermionic neural network with effective core potential

    Li, Xiang | Fan, Cunwei | Ren, Weiluo | Chen, Ji

    Physical Review Research, Vol. 4 (2022), Iss. 1

    https://doi.org/10.1103/PhysRevResearch.4.013021 [Citations: 18]
  77. Physically inspired atom-centered symmetry functions for the construction of high dimensional neural network potential energy surfaces

    Zhang, Kangyu | Yin, Lichang | Liu, Gang

    Computational Materials Science, Vol. 186 (2021), Iss. P.110071

    https://doi.org/10.1016/j.commatsci.2020.110071 [Citations: 10]
  78. A generalizable machine learning potential of Ag–Au nanoalloys and its application to surface reconstruction, segregation and diffusion

    Wang, YiNan | Zhang, LinFeng | Xu, Ben | Wang, XiaoYang | Wang, Han

    Modelling and Simulation in Materials Science and Engineering, Vol. 30 (2022), Iss. 2 P.025003

    https://doi.org/10.1088/1361-651X/ac4002 [Citations: 15]
  79. Perspective: Atomistic simulations of water and aqueous systems with machine learning potentials

    Omranpour, Amir | Montero De Hijes, Pablo | Behler, Jörg | Dellago, Christoph

    The Journal of Chemical Physics, Vol. 160 (2024), Iss. 17

    https://doi.org/10.1063/5.0201241 [Citations: 7]
  80. Incorporating Neural Networks into the AMOEBA Polarizable Force Field

    Wang, Yanxing | Inizan, Théo Jaffrelot | Liu, Chengwen | Piquemal, Jean-Philip | Ren, Pengyu

    The Journal of Physical Chemistry B, Vol. 128 (2024), Iss. 10 P.2381

    https://doi.org/10.1021/acs.jpcb.3c08166 [Citations: 2]
  81. Machine Learning and Physics: A Survey of Integrated Models

    Seyyedi, Azra | Bohlouli, Mahdi | Oskoee, Seyedehsan Nedaaee

    ACM Computing Surveys, Vol. 56 (2024), Iss. 5 P.1

    https://doi.org/10.1145/3611383 [Citations: 1]
  82. Coordination and Thermophysical Properties of Transition Metal Chlorocomplexes in LiCl–KCl Eutectic

    Zhang, Jing | Fuller, Jon | An, Qi

    The Journal of Physical Chemistry B, Vol. 125 (2021), Iss. 31 P.8876

    https://doi.org/10.1021/acs.jpcb.1c03748 [Citations: 19]
  83. A deep learning interatomic potential suitable for simulating radiation damage in bulk tungsten

    Ding, Chang-Jie | Lei, Ya-Wei | Wang, Xiao-Yang | Li, Xiao-Lin | Li, Xiang-Yan | Zhang, Yan-Ge | Xu, Yi-Chun | Liu, Chang-Song | Wu, Xue-Bang

    Tungsten, Vol. 6 (2024), Iss. 2 P.304

    https://doi.org/10.1007/s42864-023-00230-4 [Citations: 1]
  84. Tutorial: Systematic development of polynomial machine learning potentials for elemental and alloy systems

    Seko, Atsuto

    Journal of Applied Physics, Vol. 133 (2023), Iss. 1

    https://doi.org/10.1063/5.0129045 [Citations: 9]
  85. Prediction of Water Diffusion in Wide Varieties of Polymers with All-Atom Molecular Dynamics Simulations and Deep Generative Models

    Kawada, Ryo | Endo, Katsuhiro | Yasuoka, Kenji | Kojima, Hidekazu | Matubayasi, Nobuyuki

    Journal of Chemical Information and Modeling, Vol. 63 (2023), Iss. 1 P.76

    https://doi.org/10.1021/acs.jcim.2c01316 [Citations: 6]
  86. A review of advancements in coarse-grained molecular dynamics simulations

    Joshi, Soumil Y. | Deshmukh, Sanket A.

    Molecular Simulation, Vol. 47 (2021), Iss. 10-11 P.786

    https://doi.org/10.1080/08927022.2020.1828583 [Citations: 139]
  87. Characterization of the Hydrogen-Bond Network in High-Pressure Water by Deep Potential Molecular Dynamics

    Liu, Renxi | Chen, Mohan

    Journal of Chemical Theory and Computation, Vol. 19 (2023), Iss. 16 P.5602

    https://doi.org/10.1021/acs.jctc.3c00445 [Citations: 1]
  88. The TensorMol-0.1 model chemistry: a neural network augmented with long-range physics

    Yao, Kun | Herr, John E. | Toth, David W. | Mckintyre, Ryker | Parkhill, John

    Chemical Science, Vol. 9 (2018), Iss. 8 P.2261

    https://doi.org/10.1039/C7SC04934J [Citations: 345]
  89. Shadow Molecular Dynamics and Atomic Cluster Expansions for Flexible Charge Models

    Goff, James | Zhang, Yu | Negre, Christian | Rohskopf, Andrew | Niklasson, Anders M. N.

    Journal of Chemical Theory and Computation, Vol. 19 (2023), Iss. 13 P.4255

    https://doi.org/10.1021/acs.jctc.3c00349 [Citations: 1]
  90. TorchANI: A Free and Open Source PyTorch-Based Deep Learning Implementation of the ANI Neural Network Potentials

    Gao, Xiang | Ramezanghorbani, Farhad | Isayev, Olexandr | Smith, Justin S. | Roitberg, Adrian E.

    Journal of Chemical Information and Modeling, Vol. 60 (2020), Iss. 7 P.3408

    https://doi.org/10.1021/acs.jcim.0c00451 [Citations: 188]
  91. Strategy to consider element distribution when constructing training datasets for developing machine learning potentials of alloys based on a Monte-Carlo-like method

    Zhang, Zhipeng | Chen, Liuqing | Guo, Junyi | Duan, Xianyin | Shan, Bin | Duan, Xianbao

    Physical Review B, Vol. 106 (2022), Iss. 9

    https://doi.org/10.1103/PhysRevB.106.094107 [Citations: 2]
  92. Extending the Applicability of the ANI Deep Learning Molecular Potential to Sulfur and Halogens

    Devereux, Christian | Smith, Justin S. | Huddleston, Kate K. | Barros, Kipton | Zubatyuk, Roman | Isayev, Olexandr | Roitberg, Adrian E.

    Journal of Chemical Theory and Computation, Vol. 16 (2020), Iss. 7 P.4192

    https://doi.org/10.1021/acs.jctc.0c00121 [Citations: 208]
  93. Carrier-phonon decoupling in perovskite thermoelectrics via entropy engineering

    Zheng, Yunpeng | Zhang, Qinghua | Shi, Caijuan | Zhou, Zhifang | Lu, Yang | Han, Jian | Chen, Hetian | Ma, Yunpeng | Zhang, Yujun | Lin, Changpeng | Xu, Wei | Ma, Weigang | Li, Qian | Yang, Yueyang | Wei, Bin | Yang, Bingbing | Zou, Mingchu | Zhang, Wenyu | Liu, Chang | Dou, Lvye | Yang, Dongliang | Lan, Jin-Le | Yi, Di | Zhang, Xing | Gu, Lin | Nan, Ce-Wen | Lin, Yuan-Hua

    Nature Communications, Vol. 15 (2024), Iss. 1

    https://doi.org/10.1038/s41467-024-52063-5 [Citations: 4]
  94. Advances in Molecular Dynamics Studies of Molten Salts Based on Machine Learning

    Han, Yizhi | Lan, Jianhui | Liu, Xue | Shi, Weiqun

    Acta Chimica Sinica, Vol. 81 (2023), Iss. 11 P.1663

    https://doi.org/10.6023/A23070328 [Citations: 3]
  95. Enabling Large-Scale Condensed-Phase Hybrid Density Functional Theory-Based Ab Initio Molecular Dynamics II: Extensions to the Isobaric–Isoenthalpic and Isobaric–Isothermal Ensembles

    Ko, Hsin-Yu | Santra, Biswajit | DiStasio, Robert A.

    Journal of Chemical Theory and Computation, Vol. 17 (2021), Iss. 12 P.7789

    https://doi.org/10.1021/acs.jctc.0c01194 [Citations: 12]
  96. Manifold learning for coarse-graining atomistic simulations: Application to amorphous solids

    Kontolati, Katiana | Alix-Williams, Darius | Boffi, Nicholas M. | Falk, Michael L. | Rycroft, Chris H. | Shields, Michael D.

    Acta Materialia, Vol. 215 (2021), Iss. P.117008

    https://doi.org/10.1016/j.actamat.2021.117008 [Citations: 13]
  97. AI for organic and polymer synthesis

    Hong, Xin | Yang, Qi | Liao, Kuangbiao | Pei, Jianfeng | Chen, Mao | Mo, Fanyang | Lu, Hua | Zhang, Wen-Bin | Zhou, Haisen | Chen, Jiaxiao | Su, Lebin | Zhang, Shuo-Qing | Liu, Siyuan | Huang, Xu | Sun, Yi-Zhou | Wang, Yuxiang | Zhang, Zexi | Yu, Zhunzhun | Luo, Sanzhong | Fu, Xue-Feng | You, Shu-Li

    Science China Chemistry, Vol. 67 (2024), Iss. 8 P.2461

    https://doi.org/10.1007/s11426-024-2072-4 [Citations: 0]
  98. A Scalable Molecular Force Field Parameterization Method Based on Density Functional Theory and Quantum-Level Machine Learning

    Galvelis, Raimondas | Doerr, Stefan | Damas, João M. | Harvey, Matt J. | De Fabritiis, Gianni

    Journal of Chemical Information and Modeling, Vol. 59 (2019), Iss. 8 P.3485

    https://doi.org/10.1021/acs.jcim.9b00439 [Citations: 62]
  99. Deep-learning potential method to simulate shear viscosity of liquid aluminum at high temperature and high pressure by molecular dynamics

    Cheng, Yuqing | Wang, Han | Wang, Shuaichuang | Gao, Xingyu | Li, Qiong | Fang, Jun | Song, Hongzhou | Chu, Weidong | Zhang, Gongmu | Song, Haifeng | Liu, Haifeng

    AIP Advances, Vol. 11 (2021), Iss. 1

    https://doi.org/10.1063/5.0036298 [Citations: 9]
  100. Deep-learning potentials for proton transport in double-sided graphanol

    Achar, Siddarth K. | Bernasconi, Leonardo | Alvarez, Juan J. | Johnson, J. Karl

    Journal of Materials Research, Vol. 38 (2023), Iss. 24 P.5114

    https://doi.org/10.1557/s43578-023-01141-3 [Citations: 1]
  101. A Practical Guide to Recent Advances in Multiscale Modeling and Simulation of Biomolecules

    Learning DeePMD-Kit: A Guide to Building Deep Potential Models

    Liang, Wenshuo | Zeng, Jinzhe | York, Darrin M. | Zhang, Linfeng | Wang, Han

    2023

    https://doi.org/10.1063/9780735425279_006 [Citations: 5]
  102. Solving many-electron Schrödinger equation using deep neural networks

    Han, Jiequn | Zhang, Linfeng | E, Weinan

    Journal of Computational Physics, Vol. 399 (2019), Iss. P.108929

    https://doi.org/10.1016/j.jcp.2019.108929 [Citations: 120]
  103. Properties of radiation defects and threshold energy of displacement in zirconium hydride obtained by new deep-learning potential

    Wang 王, Xi 玺 | Tang 唐, Meng 孟 | Jiang 蒋, Ming-Xuan 明璇 | Chen 陈, Yang-Chun 阳春 | Liu 刘, Zhi-Xiao 智骁 | Deng 邓, Hui-Qiu 辉球

    Chinese Physics B, Vol. 33 (2024), Iss. 7 P.076103

    https://doi.org/10.1088/1674-1056/ad362b [Citations: 0]
  104. A “short blanket” dilemma for a state-of-the-art neural network potential for water: Reproducing experimental properties or the physics of the underlying many-body interactions?

    Zhai, Yaoguang | Caruso, Alessandro | Bore, Sigbjørn Løland | Luo, Zhishang | Paesani, Francesco

    The Journal of Chemical Physics, Vol. 158 (2023), Iss. 8

    https://doi.org/10.1063/5.0142843 [Citations: 33]
  105. A high-dimensional neural network potential for molecular dynamics simulations of condensed phase nickel and phase transitions

    Deng, Hao | Comer, Jeffrey | Liu, Bin

    Molecular Simulation, Vol. 49 (2023), Iss. 3 P.263

    https://doi.org/10.1080/08927022.2022.2156561 [Citations: 5]
  106. Variational operator learning: A unified paradigm marrying training neural operators and solving partial differential equations

    Xu, Tengfei | Liu, Dachuan | Hao, Peng | Wang, Bo

    Journal of the Mechanics and Physics of Solids, Vol. 190 (2024), Iss. P.105714

    https://doi.org/10.1016/j.jmps.2024.105714 [Citations: 0]
  107. Training models using forces computed by stochastic electronic structure methods

    Ceperley, David M | Jensen, Scott | Yang, Yubo | Niu, Hongwei | Pierleoni, Carlo | Holzmann, Markus

    Electronic Structure, Vol. 6 (2024), Iss. 1 P.015011

    https://doi.org/10.1088/2516-1075/ad2eb0 [Citations: 6]
  108. Crystal Structure Prediction of Binary Alloys via Deep Potential

    Wang, Haidi | Zhang, Yuzhi | Zhang, Linfeng | Wang, Han

    Frontiers in Chemistry, Vol. 8 (2020), Iss.

    https://doi.org/10.3389/fchem.2020.589795 [Citations: 16]
  109. Subspace decomposition based DNN algorithm for elliptic type multi-scale PDEs

    Li, Xi-An | Xu, Zhi-Qin John | Zhang, Lei

    Journal of Computational Physics, Vol. 488 (2023), Iss. P.112242

    https://doi.org/10.1016/j.jcp.2023.112242 [Citations: 6]
  110. Metadynamics for training neural network model chemistries: A competitive assessment

    Herr, John E. | Yao, Kun | McIntyre, Ryker | Toth, David W. | Parkhill, John

    The Journal of Chemical Physics, Vol. 148 (2018), Iss. 24

    https://doi.org/10.1063/1.5020067 [Citations: 56]
  111. Solving Traveltime Tomography with Deep Learning

    Fan, Yuwei | Ying, Lexing

    Communications in Mathematics and Statistics, Vol. 11 (2023), Iss. 1 P.3

    https://doi.org/10.1007/s40304-022-00329-z [Citations: 2]
  112. Machine-learning atomic simulation for heterogeneous catalysis

    Chen, Dongxiao | Shang, Cheng | Liu, Zhi-Pan

    npj Computational Materials, Vol. 9 (2023), Iss. 1

    https://doi.org/10.1038/s41524-022-00959-5 [Citations: 31]
  113. Strategies for the construction of machine-learning potentials for accurate and efficient atomic-scale simulations

    Miksch, April M | Morawietz, Tobias | Kästner, Johannes | Urban, Alexander | Artrith, Nongnuch

    Machine Learning: Science and Technology, Vol. 2 (2021), Iss. 3 P.031001

    https://doi.org/10.1088/2632-2153/abfd96 [Citations: 57]
  114. Reinforced dynamics for enhanced sampling in large atomic and molecular systems

    Zhang, Linfeng | Wang, Han | E, Weinan

    The Journal of Chemical Physics, Vol. 148 (2018), Iss. 12

    https://doi.org/10.1063/1.5019675 [Citations: 53]
  115. High-fidelity molecular dynamics trajectory reconstruction with bi-directional neural networks

    Winkler, Ludwig | Müller, Klaus-Robert | Sauceda, Huziel E

    Machine Learning: Science and Technology, Vol. 3 (2022), Iss. 2 P.025011

    https://doi.org/10.1088/2632-2153/ac6ec6 [Citations: 8]
  116. Structure and lattice thermal conductivity of grain boundaries in silicon by using machine learning potential and molecular dynamics

    Fujii, Susumu | Seko, Atsuto

    Computational Materials Science, Vol. 204 (2022), Iss. P.111137

    https://doi.org/10.1016/j.commatsci.2021.111137 [Citations: 15]
  117. Extended Lagrangian Born–Oppenheimer molecular dynamics for orbital-free density-functional theory and polarizable charge equilibration models

    Niklasson, Anders M. N.

    The Journal of Chemical Physics, Vol. 154 (2021), Iss. 5

    https://doi.org/10.1063/5.0038190 [Citations: 6]
  118. Machine learning interatomic potential for molecular dynamics simulation of the ferroelectric KNbO3 perovskite

    Thong, Hao-Cheng | Wang, XiaoYang | Han, Jian | Zhang, Linfeng | Li, Bei | Wang, Ke | Xu, Ben

    Physical Review B, Vol. 107 (2023), Iss. 1

    https://doi.org/10.1103/PhysRevB.107.014101 [Citations: 11]
  119. Revealing the molecular structures of α-Al2O3(0001)–water interface by machine learning based computational vibrational spectroscopy

    Du, Xianglong | Shao, Weizhi | Bao, Chenglong | Zhang, Linfeng | Cheng, Jun | Tang, Fujie

    The Journal of Chemical Physics, Vol. 161 (2024), Iss. 12

    https://doi.org/10.1063/5.0230101 [Citations: 0]
  120. Finite-temperature screw dislocation core structures and dynamics in α-titanium

    Liu, Anwen | Wen, Tongqi | Han, Jian | Srolovitz, David J.

    npj Computational Materials, Vol. 9 (2023), Iss. 1

    https://doi.org/10.1038/s41524-023-01181-7 [Citations: 1]
  121. Efficient global crystal structure prediction using polynomial machine learning potential in the binary Al–Cu alloy system

    Wakai, Hayato | Seko, Atsuto | Tanaka, Isao

    Journal of the Ceramic Society of Japan, Vol. 131 (2023), Iss. 10 P.762

    https://doi.org/10.2109/jcersj2.23053 [Citations: 0]
  122. Deep learning inter-atomic potential model for accurate irradiation damage simulations

    Wang, Hao | Guo, Xun | Zhang, Linfeng | Wang, Han | Xue, Jianming

    Applied Physics Letters, Vol. 114 (2019), Iss. 24

    https://doi.org/10.1063/1.5098061 [Citations: 36]
  123. Deep Density: Circumventing the Kohn-Sham equations via symmetry preserving neural networks

    Zepeda-Núñez, Leonardo | Chen, Yixiao | Zhang, Jiefu | Jia, Weile | Zhang, Linfeng | Lin, Lin

    Journal of Computational Physics, Vol. 443 (2021), Iss. P.110523

    https://doi.org/10.1016/j.jcp.2021.110523 [Citations: 15]
  124. Modelling infrared spectra of the O-H stretches in liquid H 2 O based on a deep learning potential, the importance of nuclear quantum effects

    Li, Dongyao | Zhao, Dan | Huang, Yao | Shen, Hujun | Deng, Mingsen

    Molecular Simulation, Vol. 50 (2024), Iss. 7-9 P.539

    https://doi.org/10.1080/08927022.2024.2328724 [Citations: 1]
  125. When do short-range atomistic machine-learning models fall short?

    Yue, Shuwen | Muniz, Maria Carolina | Calegari Andrade, Marcos F. | Zhang, Linfeng | Car, Roberto | Panagiotopoulos, Athanassios Z.

    The Journal of Chemical Physics, Vol. 154 (2021), Iss. 3

    https://doi.org/10.1063/5.0031215 [Citations: 70]
  126. Bayesian force fields from active learning for simulation of inter-dimensional transformation of stanene

    Xie, Yu | Vandermause, Jonathan | Sun, Lixin | Cepellotti, Andrea | Kozinsky, Boris

    npj Computational Materials, Vol. 7 (2021), Iss. 1

    https://doi.org/10.1038/s41524-021-00510-y [Citations: 38]
  127. Accurate fundamental invariant-neural network representation of ab initio potential energy surfaces

    Fu, Bina | Zhang, Dong H

    National Science Review, Vol. 10 (2023), Iss. 12

    https://doi.org/10.1093/nsr/nwad321 [Citations: 8]
  128. MD-GAN with multi-particle input: the machine learning of long-time molecular behavior from short-time MD data

    Kawada, Ryo | Endo, Katsuhiro | Yuhara, Daisuke | Yasuoka, Kenji

    Soft Matter, Vol. 18 (2022), Iss. 44 P.8446

    https://doi.org/10.1039/D2SM00852A [Citations: 6]
  129. Recent advances and applications of machine learning in solid-state materials science

    Schmidt, Jonathan | Marques, Mário R. G. | Botti, Silvana | Marques, Miguel A. L.

    npj Computational Materials, Vol. 5 (2019), Iss. 1

    https://doi.org/10.1038/s41524-019-0221-0 [Citations: 1499]
  130. Simulations of activities, solubilities, transport properties, and nucleation rates for aqueous electrolyte solutions

    Panagiotopoulos, Athanassios Z.

    The Journal of Chemical Physics, Vol. 153 (2020), Iss. 1

    https://doi.org/10.1063/5.0012102 [Citations: 42]
  131. Comparative Studies of the Structural and Transport Properties of Molten Salt FLiNaK Using the Machine-Learned Neural Network and Reparametrized Classical Forcefields

    Lee, Shao-Chun | Zhai, Yanqin | Li, Zhixia | Walter, Nathan P. | Rose, Melissa | Heuser, Brent J. | Z, Y

    The Journal of Physical Chemistry B, Vol. 125 (2021), Iss. 37 P.10562

    https://doi.org/10.1021/acs.jpcb.1c05608 [Citations: 27]
  132. Neural Canonical Transformation with Symplectic Flows

    Li, Shuo-Hui | Dong, Chen-Xiao | Zhang, Linfeng | Wang, Lei

    Physical Review X, Vol. 10 (2020), Iss. 2

    https://doi.org/10.1103/PhysRevX.10.021020 [Citations: 13]
  133. Deep neural network potential for simulating hydrogen blistering in tungsten

    Wang, Xiao-Yang | Wang, Yi-Nan | Xu, Ke | Dai, Fu-Zhi | Liu, Hai-Feng | Lu, Guang-Hong | Wang, Han

    Physical Review Materials, Vol. 7 (2023), Iss. 9

    https://doi.org/10.1103/PhysRevMaterials.7.093601 [Citations: 1]
  134. Ground State Energy Functional with Hartree–Fock Efficiency and Chemical Accuracy

    Chen, Yixiao | Zhang, Linfeng | Wang, Han | E, Weinan

    The Journal of Physical Chemistry A, Vol. 124 (2020), Iss. 35 P.7155

    https://doi.org/10.1021/acs.jpca.0c03886 [Citations: 45]
  135. Hydration MgCl2-NaCl-KCl molten salt using a novel approach for training machine learning potential

    Feng, Taixi | Lu, Guimin

    Journal of Molecular Liquids, Vol. 394 (2024), Iss. P.123533

    https://doi.org/10.1016/j.molliq.2023.123533 [Citations: 3]
  136. Neural network atomistic potentials for global energy minima search in carbon clusters

    Tkachenko, Nikolay V. | Tkachenko, Anastasiia A. | Nebgen, Benjamin | Tretiak, Sergei | Boldyrev, Alexander I.

    Physical Chemistry Chemical Physics, Vol. 25 (2023), Iss. 32 P.21173

    https://doi.org/10.1039/D3CP02317F [Citations: 3]
  137. Machine Learning in Nano-Scale Biomedical Engineering

    Boulogeorgos, Alexandros-Apostolos A. | Trevlakis, Stylianos E. | Tegos, Sotiris A. | Papanikolaou, Vasilis K. | Karagiannidis, George K.

    IEEE Transactions on Molecular, Biological and Multi-Scale Communications, Vol. 7 (2021), Iss. 1 P.10

    https://doi.org/10.1109/TMBMC.2020.3035383 [Citations: 26]
  138. DeePKS-kit: A package for developing machine learning-based chemically accurate energy and density functional models

    Chen, Yixiao | Zhang, Linfeng | Wang, Han | E, Weinan

    Computer Physics Communications, Vol. 282 (2023), Iss. P.108520

    https://doi.org/10.1016/j.cpc.2022.108520 [Citations: 5]
  139. Piezo- and Pyroelectricity in Zirconia: A Study with Machine-Learned Force Fields

    Ganser, Richard | Bongarz, Simon | von Mach, Alexander | Azevedo Antunes, Luis | Kersch, Alfred

    Physical Review Applied, Vol. 18 (2022), Iss. 5

    https://doi.org/10.1103/PhysRevApplied.18.054066 [Citations: 20]
  140. Exploring QCD matter in extreme conditions with Machine Learning

    Zhou, Kai | Wang, Lingxiao | Pang, Long-Gang | Shi, Shuzhe

    Progress in Particle and Nuclear Physics, Vol. 135 (2024), Iss. P.104084

    https://doi.org/10.1016/j.ppnp.2023.104084 [Citations: 27]
  141. Frame-independent vector-cloud neural network for nonlocal constitutive modeling on arbitrary grids

    Zhou, Xu-Hui | Han, Jiequn | Xiao, Heng

    Computer Methods in Applied Mechanics and Engineering, Vol. 388 (2022), Iss. P.114211

    https://doi.org/10.1016/j.cma.2021.114211 [Citations: 17]
  142. Efficient Molecular Dynamics Simulations of Deep Eutectic Solvents with First-Principles Accuracy Using Machine Learning Interatomic Potentials

    Shayestehpour, Omid | Zahn, Stefan

    Journal of Chemical Theory and Computation, Vol. 19 (2023), Iss. 23 P.8732

    https://doi.org/10.1021/acs.jctc.3c00944 [Citations: 8]
  143. Neural network–based pore flow field prediction in porous media using super resolution

    Zhou, Xu-Hui | McClure, James E. | Chen, Cheng | Xiao, Heng

    Physical Review Fluids, Vol. 7 (2022), Iss. 7

    https://doi.org/10.1103/PhysRevFluids.7.074302 [Citations: 21]
  144. Influence of temperature on the process of hydrogen bond symmetrization in ɛ-FeOOH

    Lei, Zhen-Shuai | Sun, Xiao-Wei | Wang, Xin-Xuan | Liu, Zi-Jiang | Song, Ting | Tian, Jun-Hong

    Physical Review B, Vol. 108 (2023), Iss. 18

    https://doi.org/10.1103/PhysRevB.108.184105 [Citations: 1]
  145. Simulating the isotropic Raman spectra of O–H stretching mode in liquid H2O based on a machine learning potential: the influence of vibrational couplings

    Shen, Hujun | Shen, Xu | Wu, Zhenhua

    Physical Chemistry Chemical Physics, Vol. 25 (2023), Iss. 41 P.28180

    https://doi.org/10.1039/D3CP03035K [Citations: 6]
  146. Integrating Machine Learning in the Coarse-Grained Molecular Simulation of Polymers

    Ricci, Eleonora | Vergadou, Niki

    The Journal of Physical Chemistry B, Vol. 127 (2023), Iss. 11 P.2302

    https://doi.org/10.1021/acs.jpcb.2c06354 [Citations: 8]
  147. Molecular potential energy computation via graph edge aggregate attention neural network

    Chang, Jian | Kuai, Yiming | Wei, Xian | Yu, Hui | Lan, Hai

    Chinese Journal of Chemical Physics, Vol. 36 (2023), Iss. 6 P.691

    https://doi.org/10.1063/1674-0068/cjcp2209136 [Citations: 0]
  148. Isotope effects in liquid water via deep potential molecular dynamics

    Ko, Hsin-Yu | Zhang, Linfeng | Santra, Biswajit | Wang, Han | E, Weinan | DiStasio Jr, Robert A. | Car, Roberto

    Molecular Physics, Vol. 117 (2019), Iss. 22 P.3269

    https://doi.org/10.1080/00268976.2019.1652366 [Citations: 54]
  149. A tungsten deep neural-network potential for simulating mechanical property degradation under fusion service environment

    Wang, Xiaoyang | Wang, Yinan | Zhang, Linfeng | Dai, Fuzhi | Wang, Han

    Nuclear Fusion, Vol. 62 (2022), Iss. 12 P.126013

    https://doi.org/10.1088/1741-4326/ac888b [Citations: 20]
  150. 86 PFLOPS Deep Potential Molecular Dynamics simulation of 100 million atoms with ab initio accuracy

    Lu, Denghui | Wang, Han | Chen, Mohan | Lin, Lin | Car, Roberto | E, Weinan | Jia, Weile | Zhang, Linfeng

    Computer Physics Communications, Vol. 259 (2021), Iss. P.107624

    https://doi.org/10.1016/j.cpc.2020.107624 [Citations: 120]
  151. A machine learning vibrational spectroscopy protocol for spectrum prediction and spectrum-based structure recognition

    Ren, Hao | Li, Hao | Zhang, Qian | Liang, Lijun | Guo, Wenyue | Huang, Fang | Luo, Yi | Jiang, Jun

    Fundamental Research, Vol. 1 (2021), Iss. 4 P.488

    https://doi.org/10.1016/j.fmre.2021.05.005 [Citations: 32]
  152. Many-body interactions and deep neural network potentials for water

    Zhai, Yaoguang | Rashmi, Richa | Palos, Etienne | Paesani, Francesco

    The Journal of Chemical Physics, Vol. 160 (2024), Iss. 14

    https://doi.org/10.1063/5.0203682 [Citations: 3]
  153. Machine learning-based prediction of mechanical properties of N-doped γ-graphdiyne

    Zhang, Cun | Yang, Bolin | Peng, Zhilong | Chen, Shaohua

    Science China Materials, Vol. 67 (2024), Iss. 4 P.1129

    https://doi.org/10.1007/s40843-023-2733-7 [Citations: 1]
  154. Concurrent learning scheme for crystal structure prediction

    Wang, Zhenyu | Wang, Xiaoyang | Luo, Xiaoshan | Gao, Pengyue | Sun, Ying | Lv, Jian | Wang, Han | Wang, Yanchao | Ma, Yanming

    Physical Review B, Vol. 109 (2024), Iss. 9

    https://doi.org/10.1103/PhysRevB.109.094117 [Citations: 3]
  155. A highly transferable and efficient machine learning interatomic potentials study of α-Fe–C binary system

    Meng, Fan-Shun | Shinzato, Shuhei | Zhang, Shihao | Matsubara, Kazuki | Du, Jun-Ping | Yu, Peijun | Geng, Wen-Tong | Ogata, Shigenobu

    Acta Materialia, Vol. 281 (2024), Iss. P.120408

    https://doi.org/10.1016/j.actamat.2024.120408 [Citations: 0]
  156. The development and perspective of computational physics software in China

    WANG, YanChao | REN, XinGuo | GAO, PengYue | WENG, HongMing | MA, YanMing

    SCIENTIA SINICA Physica, Mechanica & Astronomica, Vol. 54 (2024), Iss. 4 P.247110

    https://doi.org/10.1360/SSPMA-2024-0042 [Citations: 0]
  157. Profiling the off-center atomic displacements in CuCl at finite temperatures with a deep-learning potential

    Wang, Zhi-Hao | Chen, Xuan-Yan | Zhang, Zhen | Zhang, Xie | Wei, Su-Huai

    Physical Review Materials, Vol. 7 (2023), Iss. 3

    https://doi.org/10.1103/PhysRevMaterials.7.034601 [Citations: 0]
  158. Deep learning-driven molecular dynamics simulations of molten carbonates: 1. Local structure and transport properties of molten Li2CO3-Na2CO3 system

    Feng, Taixi | Yang, Bo | Lu, Guimin

    Ionics, Vol. 28 (2022), Iss. 3 P.1231

    https://doi.org/10.1007/s11581-021-04429-8 [Citations: 15]
  159. Efficiently Trained Deep Learning Potential for Graphane

    Achar, Siddarth K. | Zhang, Linfeng | Johnson, J. Karl

    The Journal of Physical Chemistry C, Vol. 125 (2021), Iss. 27 P.14874

    https://doi.org/10.1021/acs.jpcc.1c01411 [Citations: 23]
  160. Machine Learning for Chemistry: Basics and Applications

    Shi, Yun-Fei | Yang, Zheng-Xin | Ma, Sicong | Kang, Pei-Lin | Shang, Cheng | Hu, P. | Liu, Zhi-Pan

    Engineering, Vol. 27 (2023), Iss. P.70

    https://doi.org/10.1016/j.eng.2023.04.013 [Citations: 11]
  161. Crystallization of the P3Sn4 Phase upon Cooling P2Sn5 Liquid by Molecular Dynamics Simulation Using a Machine Learning Interatomic Potential

    Zhang, Chao | Sun, Yang | Wang, Hai-Di | Zhang, Feng | Wen, Tong-Qi | Ho, Kai-Ming | Wang, Cai-Zhuang

    The Journal of Physical Chemistry C, Vol. 125 (2021), Iss. 5 P.3127

    https://doi.org/10.1021/acs.jpcc.0c08873 [Citations: 8]
  162. Collaboration on Machine-Learned Potentials with IPSuite: A Modular Framework for Learning-on-the-Fly

    Zills, Fabian | Schäfer, Moritz René | Segreto, Nico | Kästner, Johannes | Holm, Christian | Tovey, Samuel

    The Journal of Physical Chemistry B, Vol. 128 (2024), Iss. 15 P.3662

    https://doi.org/10.1021/acs.jpcb.3c07187 [Citations: 4]
  163. The Reconstruction of Pt(001) Surface and the Shell‐Like Reconstruction of the Vicinal Pt(001) Surfaces Revealed by Neural Network Potential

    Qian, Cheng | Hedman, Daniel | Li, Pai | Kim, Sung Youb | Ding, Feng

    Small, Vol. 20 (2024), Iss. 44

    https://doi.org/10.1002/smll.202404274 [Citations: 0]
  164. Theory of moment propagation for quantum dynamics in single-particle description

    Boyer, Nicholas J. | Shepard, Christopher | Zhou, Ruiyi | Xu, Jianhang | Kanai, Yosuke

    The Journal of Chemical Physics, Vol. 160 (2024), Iss. 6

    https://doi.org/10.1063/5.0174669 [Citations: 0]
  165. Compressing physics with an autoencoder: Creating an atomic species representation to improve machine learning models in the chemical sciences

    Herr, John E. | Koh, Kevin | Yao, Kun | Parkhill, John

    The Journal of Chemical Physics, Vol. 151 (2019), Iss. 8

    https://doi.org/10.1063/1.5108803 [Citations: 19]
  166. DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics

    Wang, Han | Zhang, Linfeng | Han, Jiequn | E, Weinan

    Computer Physics Communications, Vol. 228 (2018), Iss. P.178

    https://doi.org/10.1016/j.cpc.2018.03.016 [Citations: 997]
  167. Determining the thermal conductivity and phonon behavior of SiC materials with quantum accuracy via deep learning interatomic potential model

    Fu, Baoqin | Sun, Yandong | Jiang, Wanrun | Wang, Fu | Zhang, Linfeng | Wang, Han | Xu, Ben

    Journal of Nuclear Materials, Vol. 591 (2024), Iss. P.154897

    https://doi.org/10.1016/j.jnucmat.2024.154897 [Citations: 2]
  168. A deep potential model with long-range electrostatic interactions

    Zhang, Linfeng | Wang, Han | Muniz, Maria Carolina | Panagiotopoulos, Athanassios Z. | Car, Roberto | E, Weinan

    The Journal of Chemical Physics, Vol. 156 (2022), Iss. 12

    https://doi.org/10.1063/5.0083669 [Citations: 88]
  169. High-Fidelity Potential Energy Surfaces for Gas-Phase and Gas–Surface Scattering Processes from Machine Learning

    Jiang, Bin | Li, Jun | Guo, Hua

    The Journal of Physical Chemistry Letters, Vol. 11 (2020), Iss. 13 P.5120

    https://doi.org/10.1021/acs.jpclett.0c00989 [Citations: 150]
  170. Representing globally accurate reactive potential energy surfaces with complex topography by combining Gaussian process regression and neural networks

    Yang, Zijiang | Chen, Hanghang | Chen, Maodu

    Physical Chemistry Chemical Physics, Vol. 24 (2022), Iss. 21 P.12827

    https://doi.org/10.1039/D2CP00719C [Citations: 6]
  171. Signatures of a liquid–liquid transition in an ab initio deep neural network model for water

    Gartner, Thomas E. | Zhang, Linfeng | Piaggi, Pablo M. | Car, Roberto | Panagiotopoulos, Athanassios Z. | Debenedetti, Pablo G.

    Proceedings of the National Academy of Sciences, Vol. 117 (2020), Iss. 42 P.26040

    https://doi.org/10.1073/pnas.2015440117 [Citations: 133]
  172. Deep neural network for the dielectric response of insulators

    Zhang, Linfeng | Chen, Mohan | Wu, Xifan | Wang, Han | E, Weinan | Car, Roberto

    Physical Review B, Vol. 102 (2020), Iss. 4

    https://doi.org/10.1103/PhysRevB.102.041121 [Citations: 80]
  173. Structure and transport properties of LiTFSI-based deep eutectic electrolytes from machine-learned interatomic potential simulations

    Shayestehpour, Omid | Zahn, Stefan

    The Journal of Chemical Physics, Vol. 161 (2024), Iss. 13

    https://doi.org/10.1063/5.0232631 [Citations: 0]
  174. Azo(xy) vs Aniline Selectivity in Catalytic Nitroarene Reduction by Intermetallics: Experiments and Simulations

    Daniels, Carena L. | Liu, Da-Jiang | Adamson, Marquix A. S. | Knobeloch, Megan | Vela, Javier

    The Journal of Physical Chemistry C, Vol. 125 (2021), Iss. 44 P.24440

    https://doi.org/10.1021/acs.jpcc.1c08569 [Citations: 12]
  175. Embedding Quantum Statistical Excitations in a Classical Force Field

    Atlas, Susan R.

    The Journal of Physical Chemistry A, Vol. 125 (2021), Iss. 17 P.3760

    https://doi.org/10.1021/acs.jpca.1c00164 [Citations: 3]
  176. Discovery and design of soft polymeric bio-inspired materials with multiscale simulations and artificial intelligence

    Zhai, Chenxi | Li, Tianjiao | Shi, Haoyuan | Yeo, Jingjie

    Journal of Materials Chemistry B, Vol. 8 (2020), Iss. 31 P.6562

    https://doi.org/10.1039/D0TB00896F [Citations: 50]
  177. Rapid Prediction of a Liquid Structure from a Single Molecular Configuration Using Deep Learning

    Li, Chunhui | Gilbert, Benjamin | Farrell, Steven | Zarzycki, Piotr

    Journal of Chemical Information and Modeling, Vol. 63 (2023), Iss. 12 P.3742

    https://doi.org/10.1021/acs.jcim.3c00472 [Citations: 2]
  178. Development and Validation of Versatile Deep Atomistic Potentials for Metal Oxides

    Wisesa, Pandu | Andolina, Christopher M. | Saidi, Wissam A.

    The Journal of Physical Chemistry Letters, Vol. 14 (2023), Iss. 2 P.468

    https://doi.org/10.1021/acs.jpclett.2c03445 [Citations: 11]
  179. Deep learning-based neural network potential for investigating the synergistic effect of H and He in BCC-Fe

    Wu, Fengnan | Liu, Zhixiao | Chen, Yangchun | Guo, Xun | Xue, Jianming | Li, Yuhao | Huang, Haoxuan | Zhou, Hongbo | Deng, Huiqiu

    Computational Materials Science, Vol. 246 (2025), Iss. P.113434

    https://doi.org/10.1016/j.commatsci.2024.113434 [Citations: 0]
  180. Machine learning-assisted multi-scale modeling

    E, Weinan | Lei, Huan | Xie, Pinchen | Zhang, Linfeng

    Journal of Mathematical Physics, Vol. 64 (2023), Iss. 7

    https://doi.org/10.1063/5.0149861 [Citations: 2]
  181. Edge Conductivity in PtSe2Nanostructures

    Kempt, Roman | Kuc, Agnieszka | Brumme, Thomas | Heine, Thomas

    Small Structures, Vol. 5 (2024), Iss. 2

    https://doi.org/10.1002/sstr.202300222 [Citations: 1]
  182. Uniformly accurate machine learning-based hydrodynamic models for kinetic equations

    Han, Jiequn | Ma, Chao | Ma, Zheng | E, Weinan

    Proceedings of the National Academy of Sciences, Vol. 116 (2019), Iss. 44 P.21983

    https://doi.org/10.1073/pnas.1909854116 [Citations: 57]