Phase-Field Models for Multi-Component Fluid Flows

Year:    2012

Communications in Computational Physics, Vol. 12 (2012), Iss. 3 : pp. 613–661

Abstract

In this paper, we review the recent development of phase-field models and their numerical methods for multi-component fluid flows with interfacial phenomena. The models consist of a Navier-Stokes system coupled with a multi-component Cahn-Hilliard system through a phase-field dependent surface tension force, variable density and viscosity, and the advection term. The classical infinitely thin boundary of separation between two immiscible fluids is replaced by a transition region of a small but finite width, across which the composition of the mixture changes continuously. A constant level set of the phase-field is used to capture the interface between two immiscible fluids. Phase-field methods are capable of computing topological changes such as splitting and merging, and thus have been applied successfully to multi-component fluid flows involving large interface deformations. Practical applications are provided to illustrate the usefulness of using a phase-field method. Computational results of various experiments show the accuracy and effectiveness of phase-field models.

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.301110.040811a

Communications in Computational Physics, Vol. 12 (2012), Iss. 3 : pp. 613–661

Published online:    2012-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    49

Keywords:   

  1. Mesoscale models of dispersions stabilized by surfactants and colloids

    van der Sman, R.G.M. | Meinders, M.B.J.

    Advances in Colloid and Interface Science, Vol. 211 (2014), Iss. P.63

    https://doi.org/10.1016/j.cis.2014.06.004 [Citations: 20]
  2. A class of monotone and structure-preserving Du Fort-Frankel schemes for nonlinear Allen-Cahn equation

    Deng, Dingwen | Lin, Shuhua | Wang, Qihong

    Computers & Mathematics with Applications, Vol. 170 (2024), Iss. P.1

    https://doi.org/10.1016/j.camwa.2024.06.023 [Citations: 0]
  3. A high-accuracy framework for phase-field fracture interface reconstructions with application to Stokes fluid-filled fracture surrounded by an elastic medium

    von Wahl, Henry | Wick, Thomas

    Computer Methods in Applied Mechanics and Engineering, Vol. 415 (2023), Iss. P.116202

    https://doi.org/10.1016/j.cma.2023.116202 [Citations: 2]
  4. Numerical analysis of fully discrete energy stable weak Galerkin finite element Scheme for a coupled Cahn-Hilliard-Navier-Stokes phase-field model

    Dehghan, Mehdi | Gharibi, Zeinab

    Applied Mathematics and Computation, Vol. 410 (2021), Iss. P.126487

    https://doi.org/10.1016/j.amc.2021.126487 [Citations: 4]
  5. Modeling of nanoscale liquid mixture transport by density functional hydrodynamics

    Dinariev, Oleg Yu. | Evseev, Nikolay V.

    Physical Review E, Vol. 95 (2017), Iss. 6

    https://doi.org/10.1103/PhysRevE.95.063307 [Citations: 11]
  6. A hybrid variational Allen‐Cahn/ALE scheme for the coupled analysis of two‐phase fluid‐structure interaction

    Joshi, Vaibhav | Jaiman, Rajeev K.

    International Journal for Numerical Methods in Engineering, Vol. 117 (2019), Iss. 4 P.405

    https://doi.org/10.1002/nme.5961 [Citations: 22]
  7. A phase field model for partially saturated geomaterials describing fluid–fluid displacements, Part II: Stability analysis and two-dimensional simulations

    Ommi, Siddhartha H. | Sciarra, Giulio | Kotronis, Panagiotis

    Advances in Water Resources, Vol. 164 (2022), Iss. P.104201

    https://doi.org/10.1016/j.advwatres.2022.104201 [Citations: 5]
  8. Entropy stable modeling of non-isothermal multi-component diffuse-interface two-phase flows with realistic equations of state

    Kou, Jisheng | Sun, Shuyu

    Computer Methods in Applied Mechanics and Engineering, Vol. 341 (2018), Iss. P.221

    https://doi.org/10.1016/j.cma.2018.06.002 [Citations: 20]
  9. Linear and unconditionally energy stable schemes for the binary fluid–surfactant phase field model

    Yang, Xiaofeng | Ju, Lili

    Computer Methods in Applied Mechanics and Engineering, Vol. 318 (2017), Iss. P.1005

    https://doi.org/10.1016/j.cma.2017.02.011 [Citations: 110]
  10. Simulation Study on the Dynamic Behaviors of Water-in-Oil Emulsified Droplets on Coalescing Fibers

    Chen, Chaolang | Chen, Lei | Weng, Ding | Li, Xuan | Li, Zhaoxin | Wang, Jiadao

    Langmuir, Vol. 36 (2020), Iss. 48 P.14872

    https://doi.org/10.1021/acs.langmuir.0c02948 [Citations: 16]
  11. A conservative level set method for N-phase flows with a free-energy-based surface tension model

    Howard, Amanda A. | Tartakovsky, Alexandre M.

    Journal of Computational Physics, Vol. 426 (2021), Iss. P.109955

    https://doi.org/10.1016/j.jcp.2020.109955 [Citations: 18]
  12. Decoupled Energy Stable Schemes for a Phase-Field Model of Two-Phase Incompressible Flows with Variable Density

    Liu, Chun | Shen, Jie | Yang, Xiaofeng

    Journal of Scientific Computing, Vol. 62 (2015), Iss. 2 P.601

    https://doi.org/10.1007/s10915-014-9867-4 [Citations: 95]
  13. COMPARISON OF DIFFERENT NUMERICAL SCHEMES FOR THE CAHN-HILLIARD EQUATION

    Lee, Seunggyu | Lee, Chaeyoung | Lee, Hyun Geun | Kim, Junseok

    Journal of the Korea Society for Industrial and Applied Mathematics, Vol. 17 (2013), Iss. 3 P.197

    https://doi.org/10.12941/jksiam.2013.17.197 [Citations: 6]
  14. Conservative Allen–Cahn–Navier–Stokes system for incompressible two-phase fluid flows

    Jeong, Darae | Kim, Junseok

    Computers & Fluids, Vol. 156 (2017), Iss. P.239

    https://doi.org/10.1016/j.compfluid.2017.07.009 [Citations: 73]
  15. Numerical approximations to a new phase field model for two phase flows of complex fluids

    Zhao, Jia | Wang, Qi | Yang, Xiaofeng

    Computer Methods in Applied Mechanics and Engineering, Vol. 310 (2016), Iss. P.77

    https://doi.org/10.1016/j.cma.2016.06.008 [Citations: 54]
  16. Interface velocity correction for improving resolved CFD-DEM simulation of two-phase flow in densely packed granular media

    Shen, Zhihao | Wang, Wei | Wang, Gang | Huang, Duruo | Jin, Feng

    Computers and Geotechnics, Vol. 174 (2024), Iss. P.106639

    https://doi.org/10.1016/j.compgeo.2024.106639 [Citations: 0]
  17. Some Efficient Precoditioners for the Semi-implicit Systems of the Cahn-Hilliard Equation

    Li, Congying | Chen, Shenghai | Jiang, Fongying

    2021 International Conference on Electronic Information Technology and Smart Agriculture (ICEITSA), (2021), P.251

    https://doi.org/10.1109/ICEITSA54226.2021.00056 [Citations: 0]
  18. Computational Science and Its Applications – ICCSA 2023 Workshops

    Simulation of Two-Phase Flow in Models with Micro-porous Material

    Lisitsa, Vadim | Khachkova, Tatyana | Krutko, Vladislav | Avdonin, Alexander

    2023

    https://doi.org/10.1007/978-3-031-37111-0_1 [Citations: 1]
  19. “Digital Core” Technology and Supercomputer Computing

    Balashov, V. A. | Savenkov, E. B. | Chetverushkin, B. N.

    Herald of the Russian Academy of Sciences, Vol. 93 (2023), Iss. 1 P.18

    https://doi.org/10.1134/S101933162303005X [Citations: 0]
  20. Phase Field Method for the Assessment of the New-Old Billet Material Interaction during Continuous Extrusion Using COMSOL Multiphysics

    Di Donato, Sara | Pelaccia, Riccardo | Negozio, Marco

    Journal of Materials Engineering and Performance, Vol. (2024), Iss.

    https://doi.org/10.1007/s11665-024-10013-8 [Citations: 0]
  21. Stabilized Energy Factorization Approach for Allen–Cahn Equation with Logarithmic Flory–Huggins Potential

    Wang, Xiuhua | Kou, Jisheng | Cai, Jianchao

    Journal of Scientific Computing, Vol. 82 (2020), Iss. 2

    https://doi.org/10.1007/s10915-020-01127-x [Citations: 30]
  22. A conservative Allen–Cahn equation with a curvature-dependent Lagrange multiplier

    Kwak, Soobin | Yang, Junxiang | Kim, Junseok

    Applied Mathematics Letters, Vol. 126 (2022), Iss. P.107838

    https://doi.org/10.1016/j.aml.2021.107838 [Citations: 12]
  23. A two-derivative time integrator for the Cahn-Hilliard equation

    Theodosiou, Eleni | Bringedal, Carina | Schütz, Jochen

    Mathematical Modelling and Analysis, Vol. 29 (2024), Iss. 4 P.714

    https://doi.org/10.3846/mma.2024.20646 [Citations: 0]
  24. A thermodynamically consistent phase-field model for two-phase flows with thermocapillary effects

    Guo, Z. | Lin, P.

    Journal of Fluid Mechanics, Vol. 766 (2015), Iss. P.226

    https://doi.org/10.1017/jfm.2014.696 [Citations: 87]
  25. Drop impact dynamics of complex fluids: a review

    Shah, Phalguni | Driscoll, Michelle M.

    Soft Matter, Vol. 20 (2024), Iss. 25 P.4839

    https://doi.org/10.1039/D4SM00145A [Citations: 1]
  26. A numerical method for the quasi-incompressible Cahn–Hilliard–Navier–Stokes equations for variable density flows with a discrete energy law

    Guo, Z. | Lin, P. | Lowengrub, J.S.

    Journal of Computational Physics, Vol. 276 (2014), Iss. P.486

    https://doi.org/10.1016/j.jcp.2014.07.038 [Citations: 82]
  27. Propagation of capillary waves in two-layer oil–water turbulent flow

    Giamagas, Georgios | Zonta, Francesco | Roccon, Alessio | Soldati, Alfredo

    Journal of Fluid Mechanics, Vol. 960 (2023), Iss.

    https://doi.org/10.1017/jfm.2023.189 [Citations: 9]
  28. A Positivity-Preserving, Energy Stable BDF2 Scheme with Variable Steps for the Cahn–Hilliard Equation with Logarithmic Potential

    Liu, Qianqian | Jing, Jianyu | Yuan, Maoqin | Chen, Wenbin

    Journal of Scientific Computing, Vol. 95 (2023), Iss. 2

    https://doi.org/10.1007/s10915-023-02163-z [Citations: 5]
  29. Numerical simulation of two-phase flow in porous media using a wavelet based phase-field method

    Ahammad, M. Jalal | Alam, Jahrul M | Rahman, M.A. | Butt, Stephen D.

    Chemical Engineering Science, Vol. 173 (2017), Iss. P.230

    https://doi.org/10.1016/j.ces.2017.07.014 [Citations: 9]
  30. Advances in Computational Modeling and Simulation

    Multi-Phase Fluid-Structure Interaction with Diffused Interface Capturing

    Joshi, Vaibhav | Gurugubelli, Pardha S.

    2022

    https://doi.org/10.1007/978-981-16-7857-8_13 [Citations: 0]
  31. Computational modeling of calcite cementation in saline limestone aquifers: a phase-field study

    Prajapati, Nishant | Selzer, Michael | Nestler, Britta

    Geothermal Energy, Vol. 5 (2017), Iss. 1

    https://doi.org/10.1186/s40517-017-0072-1 [Citations: 14]
  32. Minimum Energy Paths of Wetting Transitions on Grooved Surfaces

    Pashos, George | Kokkoris, George | Boudouvis, Andreas G.

    Langmuir, Vol. 31 (2015), Iss. 10 P.3059

    https://doi.org/10.1021/la504887w [Citations: 39]
  33. Modeling multiphase flow using fluctuating hydrodynamics

    Chaudhri, Anuj | Bell, John B. | Garcia, Alejandro L. | Donev, Aleksandar

    Physical Review E, Vol. 90 (2014), Iss. 3

    https://doi.org/10.1103/PhysRevE.90.033014 [Citations: 35]
  34. Fast local image inpainting based on the Allen–Cahn model

    Li, Yibao | Jeong, Darae | Choi, Jung-il | Lee, Seunggyu | Kim, Junseok

    Digital Signal Processing, Vol. 37 (2015), Iss. P.65

    https://doi.org/10.1016/j.dsp.2014.11.006 [Citations: 52]
  35. Numerical approximations for a phase field dendritic crystal growth model based on the invariant energy quadratization approach

    Zhao, Jia | Wang, Qi | Yang, Xiaofeng

    International Journal for Numerical Methods in Engineering, Vol. 110 (2017), Iss. 3 P.279

    https://doi.org/10.1002/nme.5372 [Citations: 154]
  36. Long Time Numerical Simulations for Phase-Field Problems Using $p$-Adaptive Spectral Deferred Correction Methods

    Feng, Xinlong | Tang, Tao | Yang, Jiang

    SIAM Journal on Scientific Computing, Vol. 37 (2015), Iss. 1 P.A271

    https://doi.org/10.1137/130928662 [Citations: 73]
  37. Molecular Dynamics Simulations of Single Water Nanodroplet Impinging Vertically on Curved Copper Substrate

    Yin, Zongjun | Ding, Zhenglong | Ma, Xuegang | Zhang, Xueping | Xia, Yun

    Microgravity Science and Technology, Vol. 31 (2019), Iss. 6 P.749

    https://doi.org/10.1007/s12217-019-9696-z [Citations: 8]
  38. Effect of solutal Marangoni convection on motion, coarsening, and coalescence of droplets in a monotectic system

    Wang, F. | Choudhury, A. | Selzer, M. | Mukherjee, R. | Nestler, B.

    Physical Review E, Vol. 86 (2012), Iss. 6

    https://doi.org/10.1103/PhysRevE.86.066318 [Citations: 20]
  39. Fingering and strain localization in porous media during imbibition processes

    Zaïm, Mohammed | Ommi, Siddhartha Harsha | Collin, Frédéric | Kotronis, Panagiotis | Sciarra, Giulio

    International Journal for Numerical Methods in Engineering, Vol. 124 (2023), Iss. 16 P.3554

    https://doi.org/10.1002/nme.7261 [Citations: 1]
  40. A fully discrete virtual element scheme for the Cahn–Hilliard equation in mixed form

    Liu, Xin | He, Zhengkang | Chen, Zhangxin

    Computer Physics Communications, Vol. 246 (2020), Iss. P.106870

    https://doi.org/10.1016/j.cpc.2019.106870 [Citations: 17]
  41. Numerical Approximations for Allen-Cahn Type Phase Field Model of Two-Phase Incompressible Fluids with Moving Contact Lines

    Ma, Lina | Chen, Rui | Yang, Xiaofeng | Zhang, Hui

    Communications in Computational Physics, Vol. 21 (2017), Iss. 3 P.867

    https://doi.org/10.4208/cicp.OA-2016-0008 [Citations: 45]
  42. A Componentwise Convex Splitting Scheme for Diffuse Interface Models with Van der Waals and Peng--Robinson Equations of State

    Fan, Xiaolin | Kou, Jisheng | Qiao, Zhonghua | Sun, Shuyu

    SIAM Journal on Scientific Computing, Vol. 39 (2017), Iss. 1 P.B1

    https://doi.org/10.1137/16M1061552 [Citations: 42]
  43. Numerical analysis of energy-minimizing wavelengths of equilibrium states for diblock copolymers

    Jeong, Darae | Shin, Jaemin | Li, Yibao | Choi, Yongho | Jung, Jae-Hun | Lee, Seunggyu | Kim, Junseok

    Current Applied Physics, Vol. 14 (2014), Iss. 9 P.1263

    https://doi.org/10.1016/j.cap.2014.06.016 [Citations: 21]
  44. Diffuse interface modeling of non‐isothermal Stokes‐Darcy flow with immersed transmissibility conditions

    Suh, Hyoung Suk

    International Journal for Numerical Methods in Engineering, Vol. 125 (2024), Iss. 24

    https://doi.org/10.1002/nme.7589 [Citations: 0]
  45. Homogenization of 2D Cahn–Hilliard–Navier–Stokes system

    Bunoiu, R. | Cardone, G. | Kengne, R. | Woukeng, J. L.

    Journal of Elliptic and Parabolic Equations, Vol. 6 (2020), Iss. 1 P.377

    https://doi.org/10.1007/s41808-020-00074-w [Citations: 7]
  46. Multilevel and weighted reduced basis method for stochastic optimal control problems constrained by Stokes equations

    Chen, Peng | Quarteroni, Alfio | Rozza, Gianluigi

    Numerische Mathematik, Vol. 133 (2016), Iss. 1 P.67

    https://doi.org/10.1007/s00211-015-0743-4 [Citations: 39]
  47. A conservative numerical method for the Cahn–Hilliard equation with Dirichlet boundary conditions in complex domains

    Li, Yibao | Jeong, Darae | Shin, Jaemin | Kim, Junseok

    Computers & Mathematics with Applications, Vol. 65 (2013), Iss. 1 P.102

    https://doi.org/10.1016/j.camwa.2012.08.018 [Citations: 49]
  48. Efficient local energy dissipation preserving algorithms for the Cahn–Hilliard equation

    Mu, Zhenguo | Gong, Yuezheng | Cai, Wenjun | Wang, Yushun

    Journal of Computational Physics, Vol. 374 (2018), Iss. P.654

    https://doi.org/10.1016/j.jcp.2018.08.004 [Citations: 8]
  49. Euler force actuation mechanism for siphon valving in compact disk-like microfluidic chips

    Deng, Yongbo | Fan, Jianhua | Zhou, Song | Zhou, Teng | Wu, Junfeng | Li, Yin | Liu, Zhenyu | Xuan, Ming | Wu, Yihui

    Biomicrofluidics, Vol. 8 (2014), Iss. 2

    https://doi.org/10.1063/1.4867241 [Citations: 24]
  50. Enhanced mixing efficiency and reduced droplet size with novel droplet generators

    Kheirkhah Barzoki, Ali

    Scientific Reports, Vol. 14 (2024), Iss. 1

    https://doi.org/10.1038/s41598-024-55514-7 [Citations: 6]
  51. Physicochemical hydrodynamics of droplets out of equilibrium

    Lohse, Detlef | Zhang, Xuehua

    Nature Reviews Physics, Vol. 2 (2020), Iss. 8 P.426

    https://doi.org/10.1038/s42254-020-0199-z [Citations: 144]
  52. Unconditionally stable methods for simulating multi-component two-phase interface models with Peng–Robinson equation of state and various boundary conditions

    Kou, Jisheng | Sun, Shuyu

    Journal of Computational and Applied Mathematics, Vol. 291 (2016), Iss. P.158

    https://doi.org/10.1016/j.cam.2015.02.037 [Citations: 25]
  53. An unconditionally stable numerical method for the viscous Cahn--Hilliard equation

    Shin, Jaemin | Choi, Yongho | Kim, Junseok

    Discrete & Continuous Dynamical Systems - B, Vol. 19 (2014), Iss. 6 P.1737

    https://doi.org/10.3934/dcdsb.2014.19.1737 [Citations: 2]
  54. A comparative study of local and nonlocal Allen-Cahn equations with mass conservation

    Chai, Zhenhua | Sun, Dongke | Wang, Huili | Shi, Baochang

    International Journal of Heat and Mass Transfer, Vol. 122 (2018), Iss. P.631

    https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.013 [Citations: 82]
  55. Driving Waveform Optimization by Simulation and Numerical Analysis for Suppressing Oil-Splitting in Electrowetting Displays

    Lai, Shufa | Zhong, Qinghua | Sun, Hailing

    Frontiers in Physics, Vol. 9 (2021), Iss.

    https://doi.org/10.3389/fphy.2021.720515 [Citations: 10]
  56. Efficient numerical methods for simulating surface tension of multi-component mixtures with the gradient theory of fluid interfaces

    Kou, Jisheng | Sun, Shuyu | Wang, Xiuhua

    Computer Methods in Applied Mechanics and Engineering, Vol. 292 (2015), Iss. P.92

    https://doi.org/10.1016/j.cma.2014.10.023 [Citations: 31]
  57. Diffuse interface method for a compressible binary fluid

    Liu, Jiewei | Amberg, Gustav | Do-Quang, Minh

    Physical Review E, Vol. 93 (2016), Iss. 1

    https://doi.org/10.1103/PhysRevE.93.013121 [Citations: 22]
  58. Simplified conservative discretization of the Cahn-Hilliard-Navier-Stokes equations

    Goulding, Jason | Ayazi, Mehrnaz | Shinar, Tamar | Schroeder, Craig

    Journal of Computational Physics, Vol. 519 (2024), Iss. P.113382

    https://doi.org/10.1016/j.jcp.2024.113382 [Citations: 0]
  59. A simplified lattice Boltzmann model for two-phase electro-hydrodynamics flows and its application to simulations of droplet deformation in electric field

    Li, Qiao-Zhong | Lu, Zhi-Liang | Chen, Zhen | Shu, Chang | Liu, Yang-Yang | Guo, Tong-Qing

    Applied Mathematical Modelling, Vol. 122 (2023), Iss. P.99

    https://doi.org/10.1016/j.apm.2023.04.030 [Citations: 5]
  60. The numerical simulation of behaviors of oil-water-emulsion flow in pores by using phase field method

    Zhang, Zhenlei | Gao, Minghui | Zhou, Wei | Wang, Diansheng | Wang, Yudou

    Petroleum Science and Technology, Vol. (2023), Iss. P.1

    https://doi.org/10.1080/10916466.2023.2293246 [Citations: 1]
  61. A phase-field method for the direct simulation of two-phase flows in pore-scale media using a non-equilibrium wetting boundary condition

    Alpak, Faruk O. | Riviere, Beatrice | Frank, Florian

    Computational Geosciences, Vol. 20 (2016), Iss. 5 P.881

    https://doi.org/10.1007/s10596-015-9551-2 [Citations: 67]
  62. A unified pipe-network-based numerical manifold method for simulating immiscible two-phase flow in geological media

    Ma, G.W. | Wang, H.D. | Fan, L.F. | Chen, Y.

    Journal of Hydrology, Vol. 568 (2019), Iss. P.119

    https://doi.org/10.1016/j.jhydrol.2018.10.067 [Citations: 14]
  63. Impact Characteristics of a Carbonated Water Droplet on Hydrophobic Surface

    Abubakar, Abba Abdulhamid | Yilbas, Bekir Sami | Al-Qahtani, Hussain

    Journal of Fluids Engineering, Vol. 144 (2022), Iss. 1

    https://doi.org/10.1115/1.4051694 [Citations: 0]
  64. Numerical approximation of SAV finite difference method for the Allen–Cahn equation

    Chen, Hang | Huang, Langyang | Zhuang, Qingqu | Weng, Zhifeng

    International Journal of Modeling, Simulation, and Scientific Computing, Vol. 14 (2023), Iss. 05

    https://doi.org/10.1142/S1793962324500016 [Citations: 1]
  65. Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends

    Yang, Xiaofeng

    Journal of Computational Physics, Vol. 327 (2016), Iss. P.294

    https://doi.org/10.1016/j.jcp.2016.09.029 [Citations: 309]
  66. Numerical simulation for multi-phase fluids considering different densities with continuous finite element method

    Jiang, Yongyue | Yang, Weilian

    Journal of Physics: Conference Series, Vol. 1053 (2018), Iss. P.012014

    https://doi.org/10.1088/1742-6596/1053/1/012014 [Citations: 1]
  67. Modeling two-phase flows with complicated interface evolution using parallel physics-informed neural networks

    Qiu, Rundi | Dong, Haosen | Wang, Jingzhu | Fan, Chun | Wang, Yiwei

    Physics of Fluids, Vol. 36 (2024), Iss. 9

    https://doi.org/10.1063/5.0216609 [Citations: 0]
  68. Two-phase flow simulation algorithm for numerical estimation of relative phase permeability curves of porous materials

    Khachkova, Tatyana S. | Lisitsa, Vadim V. | Gondul, Elena A. | Prokhorov, Dmiriy I. | Kostin, Viktor I.

    Russian Journal of Numerical Analysis and Mathematical Modelling, Vol. 39 (2024), Iss. 4 P.209

    https://doi.org/10.1515/rnam-2024-0020 [Citations: 0]
  69. Numerical solution of coupled Cahn–Hilliard Navier–Stokes equations for two‐phase flows having variable density and viscosity

    Sohaib, Muhammad | Shah, Abdullah

    Mathematical Methods in the Applied Sciences, Vol. (2023), Iss.

    https://doi.org/10.1002/mma.9602 [Citations: 1]
  70. A versatile lattice Boltzmann model for immiscible ternary fluid flows

    Yu, Yuan | Liu, Haihu | Liang, Dong | Zhang, Yonghao

    Physics of Fluids, Vol. 31 (2019), Iss. 1

    https://doi.org/10.1063/1.5056765 [Citations: 50]
  71. Numerical study of buoyancy induced arrest of viscous coarsening

    Henry, Hervé

    Physics of Fluids, Vol. 35 (2023), Iss. 1

    https://doi.org/10.1063/5.0127092 [Citations: 0]
  72. Surface embedding narrow volume reconstruction from unorganized points

    Li, Yibao | Lee, Dongsun | Lee, Chaeyoung | Lee, Jihu | Lee, Sanha | Kim, Jisu | Ahn, Shinwoo | Kim, Junseok

    Computer Vision and Image Understanding, Vol. 121 (2014), Iss. P.100

    https://doi.org/10.1016/j.cviu.2014.02.002 [Citations: 19]
  73. A decoupled energy stable scheme for a hydrodynamic phase-field model of mixtures of nematic liquid crystals and viscous fluids

    Zhao, Jia | Yang, Xiaofeng | Shen, Jie | Wang, Qi

    Journal of Computational Physics, Vol. 305 (2016), Iss. P.539

    https://doi.org/10.1016/j.jcp.2015.09.044 [Citations: 64]
  74. COMPARISON OF NUMERICAL METHODS FOR TERNARY FLUID FLOWS: IMMERSED BOUNDARY, LEVEL-SET, AND PHASE-FIELD METHODS

    LEE, SEUNGGYU | JEONG, DARAE | CHOI, YONGHO | KIM, JUNSEOK

    Journal of the Korea Society for Industrial and Applied Mathematics, Vol. 20 (2016), Iss. 1 P.83

    https://doi.org/10.12941/jksiam.2016.20.083 [Citations: 0]
  75. A framework for interpreting the coarsening and structural evolution of two co‐continuous immiscible viscous fluids

    McMaster, Lee P.

    AIChE Journal, Vol. 62 (2016), Iss. 11 P.4140

    https://doi.org/10.1002/aic.15310 [Citations: 1]
  76. Modeling of unsteady flows of multiphase viscous fluid in a pore space

    Gondyul, Е. А. | Lisitsa, V. V.

    Interexpo GEO-Siberia, Vol. 2 (2022), Iss. 2 P.32

    https://doi.org/10.33764/2618-981X-2022-2-2-32-37 [Citations: 0]
  77. Decoupled and energy stable schemes for phase-field surfactant model based on mobility operator splitting technique

    Lu, Nan | Wang, Chenxi | Zhang, Lun | Zhang, Zhen

    Journal of Computational and Applied Mathematics, Vol. 459 (2025), Iss. P.116365

    https://doi.org/10.1016/j.cam.2024.116365 [Citations: 0]
  78. A consistent and conservative Phase-Field method for multiphase incompressible flows

    Huang, Ziyang | Lin, Guang | Ardekani, Arezoo M.

    Journal of Computational and Applied Mathematics, Vol. 408 (2022), Iss. P.114116

    https://doi.org/10.1016/j.cam.2022.114116 [Citations: 11]
  79. Modeling and simulation of dynamics of three-component flows on solid surface

    Shi, Yi | Wang, Xiao-Ping

    Japan Journal of Industrial and Applied Mathematics, Vol. 31 (2014), Iss. 3 P.611

    https://doi.org/10.1007/s13160-014-0151-7 [Citations: 27]
  80. Simulation of the two-dimensional Rayleigh-Taylor instability problem by using diffuse-interface model

    Khan, Saher Akmal | Shah, Abdullah

    AIP Advances, Vol. 9 (2019), Iss. 8

    https://doi.org/10.1063/1.5100791 [Citations: 7]
  81. Phase-field-based lattice Boltzmann finite-difference model for simulating thermocapillary flows

    Liu, Haihu | Valocchi, Albert J. | Zhang, Yonghao | Kang, Qinjun

    Physical Review E, Vol. 87 (2013), Iss. 1

    https://doi.org/10.1103/PhysRevE.87.013010 [Citations: 101]
  82. Existence of solutions to a two-dimensional model for nonisothermal two-phase flows of incompressible fluids

    Eleuteri, Michela | Rocca, Elisabetta | Schimperna, Giulio

    Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Vol. 33 (2016), Iss. 6 P.1431

    https://doi.org/10.1016/j.anihpc.2015.05.006 [Citations: 13]
  83. A phase‐field based model for coupling two‐phase flow with the motion of immersed rigid bodies

    Reder, Martin | Hoffrogge, Paul W. | Schneider, Daniel | Nestler, Britta

    International Journal for Numerical Methods in Engineering, Vol. 123 (2022), Iss. 16 P.3757

    https://doi.org/10.1002/nme.6988 [Citations: 5]
  84. A diffuse interface model for two-phase incompressible flows with non-local interactions and non-constant mobility

    Frigeri, Sergio | Grasselli, Maurizio | Rocca, Elisabetta

    Nonlinearity, Vol. 28 (2015), Iss. 5 P.1257

    https://doi.org/10.1088/0951-7715/28/5/1257 [Citations: 39]
  85. The subdivision-based IGA-EIEQ numerical scheme for the binary surfactant Cahn–Hilliard phase-field model on complex curved surfaces

    Pan, Qing | Chen, Chong | Rabczuk, Timon | Zhang, Jin | Yang, Xiaofeng

    Computer Methods in Applied Mechanics and Engineering, Vol. 406 (2023), Iss. P.115905

    https://doi.org/10.1016/j.cma.2023.115905 [Citations: 6]
  86. A variational interface-preserving and conservative phase-field method for the surface tension effect in two-phase flows

    Mao, Xiaoyu | Joshi, Vaibhav | Jaiman, Rajeev

    Journal of Computational Physics, Vol. 433 (2021), Iss. P.110166

    https://doi.org/10.1016/j.jcp.2021.110166 [Citations: 16]
  87. Phase-field modeling and computer simulation of the coffee-ring effect

    Yang, Junxiang | Kim, Hyundong | Lee, Chaeyoung | Kim, Sangkwon | Wang, Jian | Yoon, Sungha | Park, Jintae | Kim, Junseok

    Theoretical and Computational Fluid Dynamics, Vol. 34 (2020), Iss. 5-6 P.679

    https://doi.org/10.1007/s00162-020-00544-w [Citations: 8]
  88. Deformation and coalescence of ferrodroplets in Rosensweig model using the phase field and modified level set approaches under uniform magnetic fields

    Bai, Feng | Han, Daozhi | He, Xiaoming | Yang, Xiaofeng

    Communications in Nonlinear Science and Numerical Simulation, Vol. 85 (2020), Iss. P.105213

    https://doi.org/10.1016/j.cnsns.2020.105213 [Citations: 15]
  89. A mass conserving level set method for detailed numerical simulation of liquid atomization

    Luo, Kun | Shao, Changxiao | Yang, Yue | Fan, Jianren

    Journal of Computational Physics, Vol. 298 (2015), Iss. P.495

    https://doi.org/10.1016/j.jcp.2015.06.009 [Citations: 63]
  90. Modeling of Droplet Impact onto Polarized and Nonpolarized Dielectric Surfaces

    Yurkiv, Vitaliy | Yarin, Alexander L. | Mashayek, Farzad

    Langmuir, Vol. 34 (2018), Iss. 34 P.10169

    https://doi.org/10.1021/acs.langmuir.8b01443 [Citations: 23]
  91. A semi-analytical method to estimate the effective slip length of spreading spherical-cap shaped droplets using Cox theory

    Wörner, M | Cai, X | Alla, H | Yue, P

    Fluid Dynamics Research, Vol. 50 (2018), Iss. 3 P.035501

    https://doi.org/10.1088/1873-7005/aaaef6 [Citations: 6]
  92. Efficiently energy-dissipation-preserving ADI methods for solving two-dimensional nonlinear Allen-Cahn equation

    Deng, Dingwen | Zhao, Zilin

    Computers & Mathematics with Applications, Vol. 128 (2022), Iss. P.249

    https://doi.org/10.1016/j.camwa.2022.10.023 [Citations: 7]
  93. Laminar drag reduction ability of liquid-infused microchannels by considering different infused lubricants

    Rahimi, Amirmohammad | Shahsavari, Arghavan | Pakzad, Hossein | Moosavi, Ali | Nouri-Borujerdi, Ali

    The Journal of Chemical Physics, Vol. 158 (2023), Iss. 7

    https://doi.org/10.1063/5.0137100 [Citations: 8]
  94. Multiphase Allen–Cahn and Cahn–Hilliard models and their discretizations with the effect of pairwise surface tensions

    Wu, Shuonan | Xu, Jinchao

    Journal of Computational Physics, Vol. 343 (2017), Iss. P.10

    https://doi.org/10.1016/j.jcp.2017.04.039 [Citations: 20]
  95. A consistent and conservative Phase-Field method for compressible multiphase flows with shocks

    Huang, Ziyang | Johnsen, Eric

    Journal of Computational Physics, Vol. 488 (2023), Iss. P.112195

    https://doi.org/10.1016/j.jcp.2023.112195 [Citations: 5]
  96. A unified numerical model for wetting of soft substrates

    Aland, Sebastian | Mokbel, Dominic

    International Journal for Numerical Methods in Engineering, Vol. 122 (2021), Iss. 4 P.903

    https://doi.org/10.1002/nme.6567 [Citations: 16]
  97. Heuristic and Eulerian interface capturing approaches for shallow water type flow and application to granular flows

    Aghakhani, Hossein | Dalbey, Keith | Salac, David | Patra, Abani K.

    Computer Methods in Applied Mechanics and Engineering, Vol. 304 (2016), Iss. P.243

    https://doi.org/10.1016/j.cma.2016.02.021 [Citations: 7]
  98. On power law scaling dynamics for time-fractional phase field models during coarsening

    Zhao, Jia | Chen, Lizhen | Wang, Hong

    Communications in Nonlinear Science and Numerical Simulation, Vol. 70 (2019), Iss. P.257

    https://doi.org/10.1016/j.cnsns.2018.10.019 [Citations: 35]
  99. Optimal Distributed Control of a Nonlocal Cahn--Hilliard/Navier--Stokes System in Two Dimensions

    Frigeri, Sergio | Rocca, Elisabetta | Sprekels, Jürgen

    SIAM Journal on Control and Optimization, Vol. 54 (2016), Iss. 1 P.221

    https://doi.org/10.1137/140994800 [Citations: 49]
  100. Arbitrarily high-order unconditionally energy stable SAV schemes for gradient flow models

    Gong, Yuezheng | Zhao, Jia | Wang, Qi

    Computer Physics Communications, Vol. 249 (2020), Iss. P.107033

    https://doi.org/10.1016/j.cpc.2019.107033 [Citations: 42]
  101. Unconditional energy stability and maximum principle preserving scheme for the Allen-Cahn equation

    Xu, Zhuangzhi | Fu, Yayun

    Numerical Algorithms, Vol. (2024), Iss.

    https://doi.org/10.1007/s11075-024-01880-2 [Citations: 0]
  102. Lattice Boltzmann method for interface capturing

    Liang, Hong | Wang, Runlong | Wei, Yikun | Xu, Jiangrong

    Physical Review E, Vol. 107 (2023), Iss. 2

    https://doi.org/10.1103/PhysRevE.107.025302 [Citations: 7]
  103. Unconditional MBP preservation and energy stability of the stabilized exponential time differencing schemes for the vector-valued Allen–Cahn equations

    Li, Jiayin | Li, Jingwei

    Communications in Nonlinear Science and Numerical Simulation, Vol. 139 (2024), Iss. P.108271

    https://doi.org/10.1016/j.cnsns.2024.108271 [Citations: 0]
  104. Energy stable multigrid method for local and non-local hydrodynamic models for freezing

    Baskaran, Arvind | Guan, Zhen | Lowengrub, John

    Computer Methods in Applied Mechanics and Engineering, Vol. 299 (2016), Iss. P.22

    https://doi.org/10.1016/j.cma.2015.10.011 [Citations: 12]
  105. A coupled phase–field and volume-of-fluid method for accurate representation of limiting water wave deformation

    Liu, Yu | Yu, Xiping

    Journal of Computational Physics, Vol. 321 (2016), Iss. P.459

    https://doi.org/10.1016/j.jcp.2016.05.059 [Citations: 9]
  106. A conservative Allen–Cahn equation with a space–time dependent Lagrange multiplier

    Kim, Junseok | Lee, Seunggyu | Choi, Yongho

    International Journal of Engineering Science, Vol. 84 (2014), Iss. P.11

    https://doi.org/10.1016/j.ijengsci.2014.06.004 [Citations: 102]
  107. 3D phase field modeling of electrohydrodynamic multiphase flows

    Yang, Qingzhen | Li, Ben Q. | Ding, Yucheng

    International Journal of Multiphase Flow, Vol. 57 (2013), Iss. P.1

    https://doi.org/10.1016/j.ijmultiphaseflow.2013.06.006 [Citations: 58]
  108. Phase-field theory of multicomponent incompressible Cahn-Hilliard liquids

    Tóth, Gyula I. | Zarifi, Mojdeh | Kvamme, Bjørn

    Physical Review E, Vol. 93 (2016), Iss. 1

    https://doi.org/10.1103/PhysRevE.93.013126 [Citations: 20]
  109. Hybrid particle-phase field model and renormalized surface tension in dilute suspensions of nanoparticles

    Hardy, Alexandra J. | Daddi-Moussa-Ider, Abdallah | Tjhung, Elsen

    Physical Review E, Vol. 110 (2024), Iss. 4

    https://doi.org/10.1103/PhysRevE.110.044606 [Citations: 0]
  110. Spatio-temporal error coupling and competition in meso-flux construction of discrete unified gas-kinetic scheme

    Yang, Zeren | Zhong, Chengwen | Zhuo, Congshan | Liu, Sha

    Computers & Fluids, Vol. 244 (2022), Iss. P.105537

    https://doi.org/10.1016/j.compfluid.2022.105537 [Citations: 5]
  111. General vorticity‐streamfunction formulation for incompressible binary flow with arbitrary density ratio

    Zhu, Yanan | Yang, Yongchang | Ren, Feng

    International Journal for Numerical Methods in Fluids, Vol. 96 (2024), Iss. 4 P.561

    https://doi.org/10.1002/fld.5257 [Citations: 1]
  112. A locally conservative multiphase level set method for capillary-controlled displacements in porous media

    Jettestuen, Espen | Friis, Helmer André | Helland, Johan Olav

    Journal of Computational Physics, Vol. 428 (2021), Iss. P.109965

    https://doi.org/10.1016/j.jcp.2020.109965 [Citations: 24]
  113. Numerical study on solutal Marangoni instability in finite systems with a miscibility gap

    Wang, Fei | Mukherjee, Rajdip | Selzer, Michael | Nestler, Britta

    Physics of Fluids, Vol. 26 (2014), Iss. 12

    https://doi.org/10.1063/1.4902355 [Citations: 5]
  114. Analytical and numerical dissipativity for the space-fractional Allen–Cahn equation

    Wang, Wansheng | Huang, Yi

    Mathematics and Computers in Simulation, Vol. 207 (2023), Iss. P.80

    https://doi.org/10.1016/j.matcom.2022.12.012 [Citations: 4]
  115. Modeling of Oil/Water Interfacial Dynamics in Three-Dimensional Bistable Electrowetting Display Pixels

    Yang, Guisong | Zhuang, Lei | Bai, Pengfei | Tang, Biao | Henzen, Alex | Zhou, Guofu

    ACS Omega, Vol. 5 (2020), Iss. 10 P.5326

    https://doi.org/10.1021/acsomega.9b04352 [Citations: 6]
  116. A conservative second order phase field model for simulation of N-phase flows

    Mirjalili, Shahab | Mani, Ali

    Journal of Computational Physics, Vol. 498 (2024), Iss. P.112657

    https://doi.org/10.1016/j.jcp.2023.112657 [Citations: 5]
  117. Electro‐capillary filling in a microchannel under the influence of magnetic and electric fields

    Gorthi, Srinivas R. | Mondal, Pranab K. | Biswas, Gautam | Sahu, Kirti C.

    The Canadian Journal of Chemical Engineering, Vol. 99 (2021), Iss. 3 P.725

    https://doi.org/10.1002/cjce.23876 [Citations: 19]
  118. Advances in Mathematics and Applications

    Phase Field: A Methodology to Model Complex Material Behavior

    Boldrini, José Luiz

    2018

    https://doi.org/10.1007/978-3-319-94015-1_4 [Citations: 1]
  119. Bubble rising and interaction in ternary fluid flow: a phase field study

    Shen, Mingguang | Li, Ben Q.

    RSC Advances, Vol. 13 (2023), Iss. 6 P.3561

    https://doi.org/10.1039/D2RA06144A [Citations: 3]
  120. Modeling Refugee Movement Based on a Continuum Mechanics Phase-Field Approach of Porous Media

    Schreyer, Lynn | Voulgarakis, Nikos | Hilliard, Zachary | Lapin, Sergey | Cobb, Loren

    SIAM Journal on Applied Mathematics, Vol. 81 (2021), Iss. 5 P.2061

    https://doi.org/10.1137/19M130056X [Citations: 1]
  121. Unconditionally Energy Stable Linear Schemes for the Diffuse Interface Model with Peng–Robinson Equation of State

    Li, Hongwei | Ju, Lili | Zhang, Chenfei | Peng, Qiujin

    Journal of Scientific Computing, Vol. 75 (2018), Iss. 2 P.993

    https://doi.org/10.1007/s10915-017-0576-7 [Citations: 34]
  122. Upscaling a Navier-Stokes-Cahn-Hilliard model for two-phase porous-media flow with solute-dependent surface tension effects

    Sharmin, S. | Bastidas, M. | Bringedal, C. | Pop, I. S.

    Applicable Analysis, Vol. 101 (2022), Iss. 12 P.4171

    https://doi.org/10.1080/00036811.2022.2052858 [Citations: 3]
  123. Linear unconditional energy‐stable splitting schemes for a phase‐field model for nematic–isotropic flows with anchoring effects

    Guillén‐González, Francisco | Rodríguez‐Bellido, María Ángeles | Tierra, Giordano

    International Journal for Numerical Methods in Engineering, Vol. 108 (2016), Iss. 6 P.535

    https://doi.org/10.1002/nme.5221 [Citations: 9]
  124. On the motion of droplets driven by solutal Marangoni convection in alloy systems with a miscibility gap

    Wang, Fei | Selzer, Michael | Nestler, Britta

    Physica D: Nonlinear Phenomena, Vol. 307 (2015), Iss. P.82

    https://doi.org/10.1016/j.physd.2015.06.001 [Citations: 10]
  125. Mathematical Modelling and Numerical Simulation of Dendrite Growth Using Phase-Field Method with a Magnetic Field Effect

    Rasheed, A. | Belmiloudi, A.

    Communications in Computational Physics, Vol. 14 (2013), Iss. 2 P.477

    https://doi.org/10.4208/cicp.090412.121012a [Citations: 9]
  126. Spinodal Decomposition in the Chemistry and Technology of Inorganic Materials

    Boytsova, O. V. | Makarevich, O. N. | Sharovarov, D. I. | Makarevich, A. M.

    Inorganic Materials, Vol. 58 (2022), Iss. 7 P.673

    https://doi.org/10.1134/S002016852207007X [Citations: 0]
  127. Viscous stress approximations in diffuse interface methods for two-phase flow based on mechanical jump conditions

    Reder, Martin | Prahs, Andreas | Schneider, Daniel | Nestler, Britta

    Computer Methods in Applied Mechanics and Engineering, Vol. 432 (2024), Iss. P.117341

    https://doi.org/10.1016/j.cma.2024.117341 [Citations: 0]
  128. Maximum principle preserving and unconditionally stable scheme for a conservative Allen–Cahn equation

    Choi, Yongho | Kim, Junseok

    Engineering Analysis with Boundary Elements, Vol. 150 (2023), Iss. P.111

    https://doi.org/10.1016/j.enganabound.2023.02.016 [Citations: 5]
  129. Thermodynamically Consistent Models for Coupled Bulk and Surface Dynamics

    Jing, Xiaobo | Wang, Qi

    Entropy, Vol. 24 (2022), Iss. 11 P.1683

    https://doi.org/10.3390/e24111683 [Citations: 1]
  130. A practical and efficient numerical method for the Cahn–Hilliard equation in complex domains

    Jeong, Darae | Yang, Junxiang | Kim, Junseok

    Communications in Nonlinear Science and Numerical Simulation, Vol. 73 (2019), Iss. P.217

    https://doi.org/10.1016/j.cnsns.2019.02.009 [Citations: 21]
  131. Efficient linear schemes with unconditional energy stability for the phase field elastic bending energy model

    Yang, Xiaofeng | Ju, Lili

    Computer Methods in Applied Mechanics and Engineering, Vol. 315 (2017), Iss. P.691

    https://doi.org/10.1016/j.cma.2016.10.041 [Citations: 155]
  132. Wall-bounded multiphase flows of N immiscible incompressible fluids: Consistency and contact-angle boundary condition

    Dong, S.

    Journal of Computational Physics, Vol. 338 (2017), Iss. P.21

    https://doi.org/10.1016/j.jcp.2017.02.048 [Citations: 44]
  133. Modeling Pore-Scale Two-Phase Flow: How to Avoid Gas-Channeling Phenomena in Micropacked-Bed Reactors via Catalyst Wettability Modification

    Navarro-Brull, Francisco J. | Gómez, Roberto

    Industrial & Engineering Chemistry Research, Vol. 57 (2018), Iss. 1 P.84

    https://doi.org/10.1021/acs.iecr.7b02493 [Citations: 19]
  134. Phase-field modeling of isothermal quasi-incompressible multicomponent liquids

    Tóth, Gyula I.

    Physical Review E, Vol. 94 (2016), Iss. 3

    https://doi.org/10.1103/PhysRevE.94.033114 [Citations: 6]
  135. Analysis of Ginzburg-Landau-type models of surfactant-assisted liquid phase separation

    Tóth, Gyula I. | Kvamme, Bjørn

    Physical Review E, Vol. 91 (2015), Iss. 3

    https://doi.org/10.1103/PhysRevE.91.032404 [Citations: 16]
  136. Stabilized formulation for phase-transforming flows with special emphasis on cavitation inception

    Mukherjee, Saikat | Gomez, Hector

    Computer Methods in Applied Mechanics and Engineering, Vol. 415 (2023), Iss. P.116228

    https://doi.org/10.1016/j.cma.2023.116228 [Citations: 4]
  137. A compact fourth-order finite difference scheme for the three-dimensional Cahn–Hilliard equation

    Li, Yibao | Lee, Hyun Geun | Xia, Binhu | Kim, Junseok

    Computer Physics Communications, Vol. 200 (2016), Iss. P.108

    https://doi.org/10.1016/j.cpc.2015.11.006 [Citations: 46]
  138. A study of the barotropic quasi-hydrodynamic model for the two-phase mixture involving surface effects

    Balashov, Vladislav Aleksandrovich | Zlotnik, Alexander Anatolievich | Savenkov, Evgeny Borisovich

    Keldysh Institute Preprints, Vol. (2016), Iss. 89 P.1

    https://doi.org/10.20948/prepr-2016-89 [Citations: 2]
  139. Dry granular column collapse: Numerical simulations using the partially regularized μ(I)-model via stabilized finite elements and phase field formulation

    Balachtsis, Athanasios | Dimakopoulos, Yannis | Tsamopoulos, John

    International Journal of Multiphase Flow, Vol. 182 (2025), Iss. P.105023

    https://doi.org/10.1016/j.ijmultiphaseflow.2024.105023 [Citations: 0]
  140. Energy stable and mass conservative numerical method for a generalized hydrodynamic phase-field model with different densities

    Kou, Jisheng | Wang, Xiuhua | Zeng, Meilan | Cai, Jianchao

    Physics of Fluids, Vol. 32 (2020), Iss. 11

    https://doi.org/10.1063/5.0027627 [Citations: 23]
  141. Safeguarding against Inactivation Temperatures during Plasma Treatment of Skin: Multiphysics Model and Phase Field Method

    Shahmohammadi Beni, Mehrdad | Yu, Kwan

    Mathematical and Computational Applications, Vol. 22 (2017), Iss. 1 P.24

    https://doi.org/10.3390/mca22010024 [Citations: 2]
  142. Numerical Analysis of Fully Discretized Crank–Nicolson Scheme for Fractional-in-Space Allen–Cahn Equations

    Hou, Tianliang | Tang, Tao | Yang, Jiang

    Journal of Scientific Computing, Vol. 72 (2017), Iss. 3 P.1214

    https://doi.org/10.1007/s10915-017-0396-9 [Citations: 114]
  143. A Discontinuous Galerkin Finite Element Framework for the Direct Numerical Simulation of Flow on High-Resolution Pore-Scale Images

    Frank, Florian | Liu, Chen | Alpak, Faruk O. | Araya-Polo, Mauricio | Riviere, Beatrice

    Day 1 Mon, February 20, 2017, (2017),

    https://doi.org/10.2118/182607-MS [Citations: 3]
  144. An energy-based equilibrium contact angle boundary condition on jagged surfaces for phase-field methods

    Frank, Florian | Liu, Chen | Scanziani, Alessio | Alpak, Faruk O. | Riviere, Beatrice

    Journal of Colloid and Interface Science, Vol. 523 (2018), Iss. P.282

    https://doi.org/10.1016/j.jcis.2018.02.075 [Citations: 25]
  145. Multiphase flows of N immiscible incompressible fluids: An outflow/open boundary condition and algorithm

    Yang, Zhiguo | Dong, Suchuan

    Journal of Computational Physics, Vol. 366 (2018), Iss. P.33

    https://doi.org/10.1016/j.jcp.2018.04.003 [Citations: 12]
  146. Nonlinear Multigrid Implementation for the Two-Dimensional Cahn–Hilliard Equation

    Lee, Chaeyoung | Jeong, Darae | Yang, Junxiang | Kim, Junseok

    Mathematics, Vol. 8 (2020), Iss. 1 P.97

    https://doi.org/10.3390/math8010097 [Citations: 10]
  147. Nonisothermal conservative phase-field model for electric breakdown process

    Zipunova, Elizaveta Vyacheslavovna | Savenkov, Evgeny Borisovich

    Keldysh Institute Preprints, Vol. (2021), Iss. 19 P.1

    https://doi.org/10.20948/prepr-2021-19 [Citations: 1]
  148. Discrete maximum-norm stability of a linearized second-order finite difference scheme for Allen–Cahn equation

    Hou, T. | Wang, K. | Xiong, Y. | Xiao, X. | Zhang, Sh.

    Numerical Analysis and Applications, Vol. 10 (2017), Iss. 2 P.177

    https://doi.org/10.1134/S1995423917020082 [Citations: 11]
  149. Decoupled Energy Stable Schemes for Phase-Field Models of Two-Phase Complex Fluids

    Shen, Jie | Yang, Xiaofeng

    SIAM Journal on Scientific Computing, Vol. 36 (2014), Iss. 1 P.B122

    https://doi.org/10.1137/130921593 [Citations: 96]
  150. Predicting biofilm deformation with a viscoelastic phase‐field model: Modeling and experimental studies

    Li, Mengfei | Matouš, Karel | Nerenberg, Robert

    Biotechnology and Bioengineering, Vol. 117 (2020), Iss. 11 P.3486

    https://doi.org/10.1002/bit.27491 [Citations: 11]
  151. Nonisothermal Diffuse Interface Model of the Electrical Breakdown Channel Propagation

    Zipunova, E. V. | Kuleshov, A. A. | Savenkov, E. B.

    Journal of Applied and Industrial Mathematics, Vol. 16 (2022), Iss. 1 P.45

    https://doi.org/10.1134/S1990478922010045 [Citations: 0]
  152. Adaptive interface thickness based mobility—Phase-field method for incompressible fluids

    Sharma, Deewakar | Coquerelle, Mathieu | Erriguible, Arnaud | Amiroudine, Sakir

    International Journal of Multiphase Flow, Vol. 142 (2021), Iss. P.103687

    https://doi.org/10.1016/j.ijmultiphaseflow.2021.103687 [Citations: 4]
  153. Porous Three-Dimensional Scaffold Generation for 3D Printing

    Lee, Chaeyoung | Jeong, Darae | Yoon, Sungha | Kim, Junseok

    Mathematics, Vol. 8 (2020), Iss. 6 P.946

    https://doi.org/10.3390/math8060946 [Citations: 5]
  154. A Simple Benchmark Problem for the Numerical Methods of the Cahn–Hilliard Equation

    Li, Yibao | Lee, Chaeyoung | Wang, Jian | Yoon, Sungha | Park, Jintae | Kim, Junseok | De la Sen, Manuel

    Discrete Dynamics in Nature and Society, Vol. 2021 (2021), Iss. P.1

    https://doi.org/10.1155/2021/8889603 [Citations: 3]
  155. Numerical study on the wettability dependent interaction of a rising bubble with a periodic open cellular structure

    Cai, Xuan | Wörner, Martin | Marschall, Holger | Deutschmann, Olaf

    Catalysis Today, Vol. 273 (2016), Iss. P.151

    https://doi.org/10.1016/j.cattod.2016.03.053 [Citations: 26]
  156. Droplet impact simulation with Cahn–Hilliard phase field method coupling Navier-slip boundary and dynamic contact angle model

    Fu, Zunru | Jin, Haichuan | Yao, Guice | Wen, Dongsheng

    Physics of Fluids, Vol. 36 (2024), Iss. 4

    https://doi.org/10.1063/5.0202604 [Citations: 3]
  157. A phase-field study on polymerization-induced phase separation occasioned by diffusion and capillary flow—a mechanism for the formation of porous microstructures in membranes

    Wang, Fei | Ratke, Lorenz | Zhang, Haodong | Altschuh, Patrick | Nestler, Britta

    Journal of Sol-Gel Science and Technology, Vol. 94 (2020), Iss. 2 P.356

    https://doi.org/10.1007/s10971-020-05238-7 [Citations: 27]
  158. An adaptive variational procedure for the conservative and positivity preserving Allen–Cahn phase-field model

    Joshi, Vaibhav | Jaiman, Rajeev K.

    Journal of Computational Physics, Vol. 366 (2018), Iss. P.478

    https://doi.org/10.1016/j.jcp.2018.04.022 [Citations: 29]
  159. An efficient and physically consistent numerical method for the Maxwell–Stefan–Darcy model of two‐phase flow in porous media

    Kou, Jisheng | Chen, Huangxin | Du, ShiGui | Sun, Shuyu

    International Journal for Numerical Methods in Engineering, Vol. 124 (2023), Iss. 3 P.546

    https://doi.org/10.1002/nme.7131 [Citations: 6]
  160. Instability of a liquid sheet with viscosity contrast in inertial microfluidics

    Patel, Kuntal | Stark, Holger

    The European Physical Journal E, Vol. 44 (2021), Iss. 11

    https://doi.org/10.1140/epje/s10189-021-00147-1 [Citations: 3]
  161. Martingale solutions to stochastic nonlocal Cahn–Hilliard–Navier–Stokes systems with singular potentials driven by multiplicative noise of jump type

    Deugoué, Gabriel | Ndongmo Ngana, Aristide | Tachim Medjo, Theodore

    Random Operators and Stochastic Equations, Vol. 32 (2024), Iss. 3 P.267

    https://doi.org/10.1515/rose-2024-2013 [Citations: 0]
  162. Mass conservative lattice Boltzmann scheme for a three-dimensional diffuse interface model with Peng-Robinson equation of state

    Qiao, Zhonghua | Yang, Xuguang | Zhang, Yuze

    Physical Review E, Vol. 98 (2018), Iss. 2

    https://doi.org/10.1103/PhysRevE.98.023306 [Citations: 8]
  163. An efficient numerical algorithm for solving viscosity contrast Cahn–Hilliard–Navier–Stokes system in porous media

    Liu, Chen | Frank, Florian | Thiele, Christopher | Alpak, Faruk O. | Berg, Steffen | Chapman, Walter | Riviere, Beatrice

    Journal of Computational Physics, Vol. 400 (2020), Iss. P.108948

    https://doi.org/10.1016/j.jcp.2019.108948 [Citations: 20]
  164. A Linear Unconditionally Stable Scheme for the Incompressible Cahn–Hilliard–Navier–Stokes Phase-Field Model

    Wang, Xue | Li, Kaitai | Jia, Hongen

    Bulletin of the Iranian Mathematical Society, Vol. 48 (2022), Iss. 4 P.1991

    https://doi.org/10.1007/s41980-021-00617-4 [Citations: 1]
  165. Unconditionally maximum principle-preserving linear method for a mass-conserved Allen–Cahn model with local Lagrange multiplier

    Yang, Junxiang | Kim, Junseok

    Communications in Nonlinear Science and Numerical Simulation, Vol. 139 (2024), Iss. P.108327

    https://doi.org/10.1016/j.cnsns.2024.108327 [Citations: 0]
  166. Global sharp interface limit of the Hele–Shaw–Cahn–Hilliard system

    Fei, Mingwen

    Mathematical Methods in the Applied Sciences, Vol. 40 (2017), Iss. 3 P.833

    https://doi.org/10.1002/mma.4177 [Citations: 7]
  167. Adaptive discontinuous Galerkin finite element methods for the Allen-Cahn equation on polygonal meshes

    Li, Rui | Gao, Yali | Chen, Zhangxin

    Numerical Algorithms, Vol. 95 (2024), Iss. 4 P.1981

    https://doi.org/10.1007/s11075-023-01635-5 [Citations: 1]
  168. Study on the Clear Boundary Determination from Results of the Phase Field Design Method

    Kim, Cheol Woong | Seong, Hong Kyoung | Yoo, Jeonghoon

    International Journal of Precision Engineering and Manufacturing, Vol. 20 (2019), Iss. 9 P.1553

    https://doi.org/10.1007/s12541-019-00171-4 [Citations: 6]
  169. On an Inviscid Model for Incompressible Two-Phase Flows with Nonlocal Interaction

    Gal, Ciprian G.

    Journal of Mathematical Fluid Mechanics, Vol. 18 (2016), Iss. 4 P.659

    https://doi.org/10.1007/s00021-016-0252-y [Citations: 5]
  170. Global weak solutions to a Navier–Stokes–Cahn–Hilliard system with chemotaxis and singular potential

    He, Jingning

    Nonlinearity, Vol. 34 (2021), Iss. 4 P.2155

    https://doi.org/10.1088/1361-6544/abc596 [Citations: 8]
  171. Numerical modeling and analysis of coaxial electrohydrodynamic jet printing

    Wang, Dazhi | Abbas, Zeshan | Lu, Liangkun | Zhao, Xiangyu | Xu, Pengfei | Zhao, Kuipeng | Yin, Penghe | Liang, Junsheng

    Scientific Reports, Vol. 12 (2022), Iss. 1

    https://doi.org/10.1038/s41598-022-05596-y [Citations: 9]
  172. Discrete unified gas-kinetic scheme for the conservative Allen-Cahn equation

    Zhang, Chunhua | Liang, Hong | Guo, Zhaoli | Wang, Lian-Ping

    Physical Review E, Vol. 105 (2022), Iss. 4

    https://doi.org/10.1103/PhysRevE.105.045317 [Citations: 7]
  173. Phase-field simulation of Rayleigh instability on a fibre

    Yang, Junxiang | Kim, Junseok

    International Journal of Multiphase Flow, Vol. 105 (2018), Iss. P.84

    https://doi.org/10.1016/j.ijmultiphaseflow.2018.03.019 [Citations: 11]
  174. Numerical approximations for a three-component Cahn–Hilliard phase-field model based on the invariant energy quadratization method

    Yang, Xiaofeng | Zhao, Jia | Wang, Qi | Shen, Jie

    Mathematical Models and Methods in Applied Sciences, Vol. 27 (2017), Iss. 11 P.1993

    https://doi.org/10.1142/S0218202517500373 [Citations: 152]
  175. Maximum Spreading of Urea Water Solution during Drop Impingement

    Börnhorst, Marion | Cai, Xuan | Wörner, Martin | Deutschmann, Olaf

    Chemical Engineering & Technology, Vol. 42 (2019), Iss. 11 P.2419

    https://doi.org/10.1002/ceat.201800755 [Citations: 9]
  176. Turbulent drag reduction by compliant lubricating layer

    Roccon, Alessio | Zonta, Francesco | Soldati, Alfredo

    Journal of Fluid Mechanics, Vol. 863 (2019), Iss.

    https://doi.org/10.1017/jfm.2019.8 [Citations: 18]
  177. The scalar auxiliary variable (SAV) approach for gradient flows

    Shen, Jie | Xu, Jie | Yang, Jiang

    Journal of Computational Physics, Vol. 353 (2018), Iss. P.407

    https://doi.org/10.1016/j.jcp.2017.10.021 [Citations: 632]
  178. Prediction of Water Activity in Aqueous Polyol Solutions

    Fysun, Olga | Stoeckel, Marina | Thienel, Katharina J. F. | Wäschle, Friederike | Palzer, Stefan | Hinrichs, Jörg

    Chemie Ingenieur Technik, Vol. 87 (2015), Iss. 10 P.1327

    https://doi.org/10.1002/cite.201400134 [Citations: 6]
  179. A computational model for transport of immiscible scalars in two-phase flows

    Jain, Suhas S. | Mani, Ali

    Journal of Computational Physics, Vol. 476 (2023), Iss. P.111843

    https://doi.org/10.1016/j.jcp.2022.111843 [Citations: 8]
  180. Dynamic modelling of micro/nano-patterning transfer by an electric field

    Yang, Qingzhen | Li, Ben Q. | Ding, Yucheng

    RSC Advances, Vol. 3 (2013), Iss. 46 P.24658

    https://doi.org/10.1039/c3ra44747b [Citations: 13]
  181. Local volume-conservation-improved diffuse interface model for simulation of Rayleigh–Plateau fluid instability

    Li, Jianqing | Yang, Junxiang

    Computer Physics Communications, Vol. 296 (2024), Iss. P.109050

    https://doi.org/10.1016/j.cpc.2023.109050 [Citations: 1]
  182. Efficient and energy stable scheme for the hydrodynamically coupled three components Cahn-Hilliard phase-field model using the stabilized-Invariant Energy Quadratization (S-IEQ) Approach

    Yang, Xiaofeng

    Journal of Computational Physics, Vol. 438 (2021), Iss. P.110342

    https://doi.org/10.1016/j.jcp.2021.110342 [Citations: 14]
  183. Multi-phase-field modeling using a conservative Allen–Cahn equation for multiphase flow

    Aihara, Shintaro | Takaki, Tomohiro | Takada, Naoki

    Computers & Fluids, Vol. 178 (2019), Iss. P.141

    https://doi.org/10.1016/j.compfluid.2018.08.023 [Citations: 80]
  184. A new family of A-stable Runge-Kutta methods with equation-dependent coefficients for stiff problems

    Fang, Yonglei | Yang, Yanping | You, Xiong | Wang, Bin

    Numerical Algorithms, Vol. 81 (2019), Iss. 4 P.1235

    https://doi.org/10.1007/s11075-018-0619-7 [Citations: 4]
  185. Postprocessing Mixed Finite Element Methods For Solving Cahn–Hilliard Equation: Methods and Error Analysis

    Wang, Wansheng | Chen, Long | Zhou, Jie

    Journal of Scientific Computing, Vol. 67 (2016), Iss. 2 P.724

    https://doi.org/10.1007/s10915-015-0101-9 [Citations: 15]
  186. Accurate Conservative Phase-Field Method for Simulation of Two-Phase Flows

    Jain, Suhas S.

    SSRN Electronic Journal , Vol. (2022), Iss.

    https://doi.org/10.2139/ssrn.4062738 [Citations: 1]
  187. Lattice Boltzmann methods for multiphase flow and phase-change heat transfer

    Li, Q. | Luo, K.H. | Kang, Q.J. | He, Y.L. | Chen, Q. | Liu, Q.

    Progress in Energy and Combustion Science, Vol. 52 (2016), Iss. P.62

    https://doi.org/10.1016/j.pecs.2015.10.001 [Citations: 749]
  188. The collision of immiscible droplets in three-phase liquid systems: A numerical study using phase-field lattice Boltzmann method

    Ebadi, Adel | Hosseinalipour, S.M.

    Chemical Engineering Research and Design, Vol. 178 (2022), Iss. P.289

    https://doi.org/10.1016/j.cherd.2021.12.019 [Citations: 13]
  189. The meshless local collocation method for solving multi-dimensional Cahn-Hilliard, Swift-Hohenberg and phase field crystal equations

    Dehghan, Mehdi | Abbaszadeh, Mostafa

    Engineering Analysis with Boundary Elements, Vol. 78 (2017), Iss. P.49

    https://doi.org/10.1016/j.enganabound.2017.02.005 [Citations: 76]
  190. A ternary phase‐field model for wetting of soft elastic structures

    Aland, Sebastian | Auerbach, Paul

    International Journal for Numerical Methods in Engineering, Vol. 122 (2021), Iss. 16 P.4114

    https://doi.org/10.1002/nme.6694 [Citations: 9]
  191. Cahn–Hilliard–Navier–Stokes systems with moving contact lines

    Gal, C. G. | Grasselli, M. | Miranville, A.

    Calculus of Variations and Partial Differential Equations, Vol. 55 (2016), Iss. 3

    https://doi.org/10.1007/s00526-016-0992-9 [Citations: 31]
  192. Numerical Methods for a Multicomponent Two-Phase Interface Model with Geometric Mean Influence Parameters

    Kou, Jisheng | Sun, Shuyu

    SIAM Journal on Scientific Computing, Vol. 37 (2015), Iss. 4 P.B543

    https://doi.org/10.1137/140969579 [Citations: 24]
  193. Comparative experimental and numerical study of mixing efficiency in 3D-printed microfluidic droplet generators: T junction, cross junction, and asymmetric junctions with varying angles

    Kheirkhah Barzoki, Ali | Mohseni, Alireza | Bazyar, Mohammad Mehdi | Mohammadi, Kaivan

    Chemical Engineering and Processing - Process Intensification, Vol. 205 (2024), Iss. P.110002

    https://doi.org/10.1016/j.cep.2024.110002 [Citations: 0]
  194. An unconditionally stable second-order accurate method for systems of Cahn–Hilliard equations

    Yang, Junxiang | Kim, Junseok

    Communications in Nonlinear Science and Numerical Simulation, Vol. 87 (2020), Iss. P.105276

    https://doi.org/10.1016/j.cnsns.2020.105276 [Citations: 32]
  195. Consistency-enhanced SAV BDF2 time-marching method with relaxation for the incompressible Cahn–Hilliard–Navier–Stokes binary fluid model

    Li, Yibao | Yang, Junxiang

    Communications in Nonlinear Science and Numerical Simulation, Vol. 118 (2023), Iss. P.107055

    https://doi.org/10.1016/j.cnsns.2022.107055 [Citations: 11]
  196. A phase field numerical study of 3D bubble rising in viscous fluids under an electric field

    Yang, Qingzhen | Li, Ben Q. | Shao, Jinyou | Ding, Yucheng

    International Journal of Heat and Mass Transfer, Vol. 78 (2014), Iss. P.820

    https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.039 [Citations: 40]
  197. Numerical Methods for Solving the Cahn–Hilliard Equation and Its Applicability to Related Energy-Based Models

    Tierra, G. | Guillén-González, F.

    Archives of Computational Methods in Engineering, Vol. 22 (2015), Iss. 2 P.269

    https://doi.org/10.1007/s11831-014-9112-1 [Citations: 68]
  198. Nonequilibrium thermodynamic modeling of ternary fluid flows

    Ghaemi, A. | Germann, N.

    International Journal of Multiphase Flow, Vol. 111 (2019), Iss. P.310

    https://doi.org/10.1016/j.ijmultiphaseflow.2018.09.013 [Citations: 2]
  199. Error Analysis of a Decoupled, Linear Stabilization Scheme for the Cahn–Hilliard Model of Two-Phase Incompressible Flows

    Xu, Zhen | Yang, Xiaofeng | Zhang, Hui

    Journal of Scientific Computing, Vol. 83 (2020), Iss. 3

    https://doi.org/10.1007/s10915-020-01241-w [Citations: 8]
  200. Pore-Scale Modeling of CO2 Injection Using Density Functional Hydrodynamics

    Dinariev, Oleg | Evseev, Nikolay | Sidorenkov, Alexander | Dovgilovich, Leonid | Stukan, Mikhail | Fedorov, Maxim

    Transport in Porous Media, Vol. 151 (2024), Iss. 4 P.753

    https://doi.org/10.1007/s11242-024-02064-1 [Citations: 0]
  201. Multiphase flows of N immiscible incompressible fluids: A reduction-consistent and thermodynamically-consistent formulation and associated algorithm

    Dong, S.

    Journal of Computational Physics, Vol. 361 (2018), Iss. P.1

    https://doi.org/10.1016/j.jcp.2018.01.041 [Citations: 54]
  202. Transcritical diffuse-interface hydrodynamics of propellants in high-pressure combustors of chemical propulsion systems

    Jofre, Lluís | Urzay, Javier

    Progress in Energy and Combustion Science, Vol. 82 (2021), Iss. P.100877

    https://doi.org/10.1016/j.pecs.2020.100877 [Citations: 65]
  203. “Digital Core” Technology and Supercomputer Computing

    Balashov, V. A. | Savenkov, E. B. | Chetverushkin, B. N.

    Вестник Российской академии наук, Vol. 93 (2023), Iss. 6 P.503

    https://doi.org/10.31857/S0869587323060026 [Citations: 0]
  204. A New Class of Efficient and Robust Energy Stable Schemes for Gradient Flows

    Shen, Jie | Xu, Jie | Yang, Jiang

    SIAM Review, Vol. 61 (2019), Iss. 3 P.474

    https://doi.org/10.1137/17M1150153 [Citations: 397]
  205. Mass-conservation-improved phase field methods for turbulent multiphase flow simulation

    Soligo, Giovanni | Roccon, Alessio | Soldati, Alfredo

    Acta Mechanica, Vol. 230 (2019), Iss. 2 P.683

    https://doi.org/10.1007/s00707-018-2304-2 [Citations: 43]
  206. A viscoelastic two-phase solver using a phase-field approach

    Zografos, Konstantinos | Afonso, Alexandre M. | Poole, Robert J. | Oliveira, Mónica S.N.

    Journal of Non-Newtonian Fluid Mechanics, Vol. 284 (2020), Iss. P.104364

    https://doi.org/10.1016/j.jnnfm.2020.104364 [Citations: 7]
  207. An authenticated theoretical modeling of electrified fluid jet in core–shell nanofibers production

    Rafiei, Saeedeh | Noroozi, Babak | Heltai, Luca | Haghi, Akbar Khodaparast

    Journal of Industrial Textiles, Vol. 47 (2018), Iss. 7 P.1791

    https://doi.org/10.1177/1528083717710711 [Citations: 6]
  208. A fourth-order spatial accurate and practically stable compact scheme for the Cahn–Hilliard equation

    Lee, Chaeyoung | Jeong, Darae | Shin, Jaemin | Li, Yibao | Kim, Junseok

    Physica A: Statistical Mechanics and its Applications, Vol. 409 (2014), Iss. P.17

    https://doi.org/10.1016/j.physa.2014.04.038 [Citations: 26]
  209. A consistent and conservative phase-field method for compressible N-phase flows: Consistent limiter and multiphase reduction-consistent formulation

    Huang, Ziyang | Johnsen, Eric

    Journal of Computational Physics, Vol. 501 (2024), Iss. P.112801

    https://doi.org/10.1016/j.jcp.2024.112801 [Citations: 2]
  210. High-order discontinuous Galerkin approximation for a three-phase incompressible Navier–Stokes/Cahn–Hilliard model

    Manzanero, Juan | Redondo, Carlos | Chávez-Módena, Miguel | Rubio, Gonzalo | Valero, Eusebio | Gómez-Álvarez, Susana | Rivero-Jiménez, Ángel

    Computers & Fluids, Vol. 244 (2022), Iss. P.105545

    https://doi.org/10.1016/j.compfluid.2022.105545 [Citations: 1]
  211. On the search of rigorous thermo-kinetic model for wet phase inversion technique

    Khansary, Milad Asgarpour | Marjani, Azam | Shirazian, Saeed

    Journal of Membrane Science, Vol. 538 (2017), Iss. P.18

    https://doi.org/10.1016/j.memsci.2017.05.050 [Citations: 36]
  212. A linear convex splitting scheme for the Cahn–Hilliard equation with a high‐order polynomial free energy

    Lee, Seunggyu | Yoon, Sungha | Kim, Junseok

    International Journal for Numerical Methods in Engineering, Vol. 124 (2023), Iss. 17 P.3586

    https://doi.org/10.1002/nme.7288 [Citations: 1]
  213. Mixed bounce-back boundary scheme of the general propagation lattice Boltzmann method for advection-diffusion equations

    Guo, Xiuya | Chai, Zhenhua | Pang, Shengyong | Zhao, Yong | Shi, Baochang

    Physical Review E, Vol. 99 (2019), Iss. 6

    https://doi.org/10.1103/PhysRevE.99.063316 [Citations: 8]
  214. Mass conservative and energy stable finite difference methods for the quasi-incompressible Navier–Stokes–Cahn–Hilliard system: Primitive variable and projection-type schemes

    Guo, Z. | Lin, P. | Lowengrub, J. | Wise, S.M.

    Computer Methods in Applied Mechanics and Engineering, Vol. 326 (2017), Iss. P.144

    https://doi.org/10.1016/j.cma.2017.08.011 [Citations: 72]
  215. Processing, Analyzing and Learning of Images, Shapes, and Forms: Part 2

    Efficient and accurate structure preserving schemes for complex nonlinear systems

    Shen, Jie

    2019

    https://doi.org/10.1016/bs.hna.2019.06.004 [Citations: 3]
  216. Advected phase-field method for bounded solution of the Cahn–Hilliard Navier–Stokes equations

    Dadvand, Abdolrahman | Bagheri, Milad | Samkhaniani, Nima | Marschall, Holger | Wörner, Martin

    Physics of Fluids, Vol. 33 (2021), Iss. 5

    https://doi.org/10.1063/5.0048614 [Citations: 15]
  217. Fast and efficient narrow volume reconstruction from scattered data

    Li, Yibao | Kim, Junseok

    Pattern Recognition, Vol. 48 (2015), Iss. 12 P.4057

    https://doi.org/10.1016/j.patcog.2015.06.014 [Citations: 19]
  218. A 3D conservative level set model to simulate drop impact with phase change onto solid surfaces

    Shen, Mingguang | Li, Ben Q.

    International Journal of Multiphase Flow, Vol. 169 (2023), Iss. P.104615

    https://doi.org/10.1016/j.ijmultiphaseflow.2023.104615 [Citations: 3]
  219. Finite-dimensional global attractor of the Cahn–Hilliard–Brinkman system

    Li, Fang | Zhong, Chengkui | You, Bo

    Journal of Mathematical Analysis and Applications, Vol. 434 (2016), Iss. 1 P.599

    https://doi.org/10.1016/j.jmaa.2015.09.026 [Citations: 4]
  220. Recovery type a posteriori error estimation of adaptive finite element method for Allen–Cahn equation

    Chen, Yaoyao | Huang, Yunqing | Yi, Nianyu

    Journal of Computational and Applied Mathematics, Vol. 369 (2020), Iss. P.112574

    https://doi.org/10.1016/j.cam.2019.112574 [Citations: 22]
  221. Central moment lattice Boltzmann method using a pressure-based formulation for multiphase flows at high density ratios and including effects of surface tension and Marangoni stresses

    Hajabdollahi, Farzaneh | Premnath, Kannan N. | Welch, Samuel W.J.

    Journal of Computational Physics, Vol. 425 (2021), Iss. P.109893

    https://doi.org/10.1016/j.jcp.2020.109893 [Citations: 18]
  222. On efficient numerical schemes for a two-mode phase field crystal model with face-centered-cubic (FCC) ordering structure

    Zhang, Jun | Yang, Xiaofeng

    Applied Numerical Mathematics, Vol. 146 (2019), Iss. P.13

    https://doi.org/10.1016/j.apnum.2019.06.017 [Citations: 22]
  223. Methodology for the nonlinear coupled multi‐physics simulation of mineral dissolution

    Li, Li | Rivas, Endrina | Gracie, Robert | Dusseault, Maurice B.

    International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 45 (2021), Iss. 15 P.2193

    https://doi.org/10.1002/nag.3262 [Citations: 9]
  224. Physical formulation and numerical algorithm for simulating N immiscible incompressible fluids involving general order parameters

    Dong, S.

    Journal of Computational Physics, Vol. 283 (2015), Iss. P.98

    https://doi.org/10.1016/j.jcp.2014.11.039 [Citations: 24]
  225. A Phase Field Approach to Modeling Heavy Metal Impact in Plasma Spraying

    Shen, Mingguang | Li, Ben Q.

    Coatings, Vol. 12 (2022), Iss. 10 P.1383

    https://doi.org/10.3390/coatings12101383 [Citations: 1]
  226. Efficient, adaptive energy stable schemes for the incompressible Cahn–Hilliard Navier–Stokes phase-field models

    Chen, Ying | Shen, Jie

    Journal of Computational Physics, Vol. 308 (2016), Iss. P.40

    https://doi.org/10.1016/j.jcp.2015.12.006 [Citations: 94]
  227. On the use of local maximum entropy approximants for Cahn–Hilliard phase-field models in 2D domains and on surfaces

    Amiri, Fatemeh | Ziaei-Rad, Saeed | Valizadeh, Navid | Rabczuk, Timon

    Computer Methods in Applied Mechanics and Engineering, Vol. 346 (2019), Iss. P.1

    https://doi.org/10.1016/j.cma.2018.11.023 [Citations: 14]
  228. Modeling the electro-chemo-mechanical failure at the lithium-solid electrolyte interface: Void evolution and lithium penetration

    Fang, Ruqing | Li, Wei | Jiao, Junning | Zhao, Lihong | Yao, Yan | Zhu, Juner

    Journal of the Mechanics and Physics of Solids, Vol. 192 (2024), Iss. P.105799

    https://doi.org/10.1016/j.jmps.2024.105799 [Citations: 0]
  229. The Allen-Cahn equation with a time Caputo-Hadamard derivative: Mathematical and Numerical Analysis

    Wang, Zhen | Sun, Luhan

    Communications in Analysis and Mechanics, Vol. 15 (2023), Iss. 4 P.611

    https://doi.org/10.3934/cam.2023031 [Citations: 5]
  230. Phase-field-theory-based lattice Boltzmann equation method for N immiscible incompressible fluids

    Zheng, Lin | Zheng, Song

    Physical Review E, Vol. 99 (2019), Iss. 6

    https://doi.org/10.1103/PhysRevE.99.063310 [Citations: 13]
  231. Digital image reduction for the analysis of topological changes in the pore space of rock matrix

    Prokhorov, Dmitriy | Lisitsa, Vadim | Bazaikin, Yaroslav

    Computers and Geotechnics, Vol. 136 (2021), Iss. P.104171

    https://doi.org/10.1016/j.compgeo.2021.104171 [Citations: 7]
  232. Physical, mathematical, and numerical derivations of the Cahn–Hilliard equation

    Lee, Dongsun | Huh, Joo-Youl | Jeong, Darae | Shin, Jaemin | Yun, Ana | Kim, Junseok

    Computational Materials Science, Vol. 81 (2014), Iss. P.216

    https://doi.org/10.1016/j.commatsci.2013.08.027 [Citations: 119]
  233. Вычислительные технологии программного комплекса DiMP-Hydro для моделирования микротечений

    Балашов, Владислав Александрович | Balashov, Vladislav Aleksandrovich | Савенков, Евгений Борисович | Savenkov, Evgenii Borisovich | Четверушкин, Борис Николаевич | Chetverushkin, Boris Nikolaevich

    Математическое моделирование, Vol. 31 (2019), Iss. 7 P.21

    https://doi.org/10.1134/S0234087919070025 [Citations: 5]
  234. A phase-field method for three-phase flows with icing

    Zhang, Wenqiang | Shahmardi, Armin | Choi, Kwing-so | Tammisola, Outi | Brandt, Luca | Mao, Xuerui

    Journal of Computational Physics, Vol. 458 (2022), Iss. P.111104

    https://doi.org/10.1016/j.jcp.2022.111104 [Citations: 5]
  235. Finite droplets vs long droplets: Discrepancy in release conditions in a microscopic constricted channel

    Imani, Gloire | Zhang, Lei | Xu, Chao | Ntibahanana, Munezero | Sun, Hai | Yao, Jun

    Physics of Fluids, Vol. 35 (2023), Iss. 3

    https://doi.org/10.1063/5.0139025 [Citations: 4]
  236. Unconditionally energy-stable time-marching methods for the multi-phase conservative Allen–Cahn fluid models based on a modified SAV approach

    Wu, Jingwen | Yang, Junxiang | Tan, Zhijun

    Computer Methods in Applied Mechanics and Engineering, Vol. 398 (2022), Iss. P.115291

    https://doi.org/10.1016/j.cma.2022.115291 [Citations: 9]
  237. Simulation of three-component fluid flows using the multiphase lattice Boltzmann flux solver

    Shi, Y. | Tang, G.H. | Wang, Y.

    Journal of Computational Physics, Vol. 314 (2016), Iss. P.228

    https://doi.org/10.1016/j.jcp.2016.03.011 [Citations: 44]
  238. Linearly first- and second-order, unconditionally energy stable schemes for the phase field crystal model

    Yang, Xiaofeng | Han, Daozhi

    Journal of Computational Physics, Vol. 330 (2017), Iss. P.1116

    https://doi.org/10.1016/j.jcp.2016.10.020 [Citations: 127]
  239. A positivity preserving and conservative variational scheme for phase-field modeling of two-phase flows

    Joshi, Vaibhav | Jaiman, Rajeev K.

    Journal of Computational Physics, Vol. 360 (2018), Iss. P.137

    https://doi.org/10.1016/j.jcp.2018.01.028 [Citations: 51]
  240. A comparative study of penalization and phase field methods for the solution of the diffusion equation in complex geometries

    Tauriello, Gerardo | Koumoutsakos, Petros

    Journal of Computational Physics, Vol. 283 (2015), Iss. P.388

    https://doi.org/10.1016/j.jcp.2014.11.033 [Citations: 2]
  241. Surface Nanopatterning and Structural Coloration of Liquid Metal Gallium Through Hypergravity Nanoimprinting

    Nie, Xiuyu | Xiong, Mingzhang | Zeng, Jing | Li, Chenggang | Chen, Yue | Xu, Zushun | Fan, Wen

    Advanced Functional Materials, Vol. (2024), Iss.

    https://doi.org/10.1002/adfm.202416742 [Citations: 0]
  242. Numerical simulation of twophase flows on the base of phase-field method

    Khachkova, T. S. | Gondul, E. A. | Lisitsa, V. V. | Prokhorov, D. I. | Kostin, V. I.

    Russian Journal of Geophysical Technologies, Vol. (2024), Iss. 1 P.60

    https://doi.org/10.18303/2619-1563-2024-1-60 [Citations: 0]
  243. Wetting transitions on patterned surfaces with diffuse interaction potentials embedded in a Young-Laplace formulation

    Pashos, G. | Kokkoris, G. | Papathanasiou, A. G. | Boudouvis, A. G.

    The Journal of Chemical Physics, Vol. 144 (2016), Iss. 3

    https://doi.org/10.1063/1.4940032 [Citations: 18]
  244. Computational Materials System Design

    Phase Field Modeling of Microstructural Evolution

    DeWitt, Stephen | Thornton, Katsuyo

    2018

    https://doi.org/10.1007/978-3-319-68280-8_4 [Citations: 6]
  245. An upwind DG scheme preserving the maximum principle for the convective Cahn-Hilliard model

    Acosta-Soba, Daniel | Guillén-González, Francisco | Rodríguez-Galván, J. Rafael

    Numerical Algorithms, Vol. 92 (2023), Iss. 3 P.1589

    https://doi.org/10.1007/s11075-022-01355-2 [Citations: 10]
  246. Energy Transfers in Atmosphere and Ocean

    Diffuse Interface Approaches in Atmosphere and Ocean—Modeling and Numerical Implementation

    Garcke, Harald | Hinze, Michael | Kahle, Christian

    2019

    https://doi.org/10.1007/978-3-030-05704-6_9 [Citations: 0]
  247. Efficient and practical phase-field method for the incompressible multi-component fluids on 3D surfaces with arbitrary shapes

    Tan, Zhijun | Wu, Jingwen | Yang, Junxiang

    Journal of Computational Physics, Vol. 467 (2022), Iss. P.111444

    https://doi.org/10.1016/j.jcp.2022.111444 [Citations: 4]
  248. Diffuse-interface two-phase flow models with different densities: A new quasi-incompressible form and a linear energy-stable method

    Shokrpour Roudbari, M. | Şimşek, G. | van Brummelen, E. H. | van der Zee, K. G.

    Mathematical Models and Methods in Applied Sciences, Vol. 28 (2018), Iss. 04 P.733

    https://doi.org/10.1142/S0218202518500197 [Citations: 45]
  249. Investigating the stability of the phase field solution of equilibrium droplet configurations by eigenvalues and eigenvectors

    Diewald, Felix | Kuhn, Charlotte | Heier, Michaela | Langenbach, Kai | Horsch, Martin | Hasse, Hans | Müller, Ralf

    Computational Materials Science, Vol. 141 (2018), Iss. P.185

    https://doi.org/10.1016/j.commatsci.2017.08.029 [Citations: 13]
  250. Numerical approximations for a phase-field moving contact line model with variable densities and viscosities

    Yu, Haijun | Yang, Xiaofeng

    Journal of Computational Physics, Vol. 334 (2017), Iss. P.665

    https://doi.org/10.1016/j.jcp.2017.01.026 [Citations: 59]
  251. Phase field simulation of Rayleigh–Taylor instability with a meshless method

    Talat, Nazia | Mavrič, Boštjan | Hatić, Vanja | Bajt, Saša | Šarler, Božidar

    Engineering Analysis with Boundary Elements, Vol. 87 (2018), Iss. P.78

    https://doi.org/10.1016/j.enganabound.2017.11.015 [Citations: 27]
  252. A linear second-order maximum bound principle preserving finite difference scheme for the generalized Allen–Cahn equation

    Du, Zirui | Hou, Tianliang

    Applied Mathematics Letters, Vol. 158 (2024), Iss. P.109250

    https://doi.org/10.1016/j.aml.2024.109250 [Citations: 0]
  253. Multi-physics modeling of the 2022 NIST additive manufacturing benchmark (AM-Bench) test series

    Zhu, Qiming | Zhao, Ze | Yan, Jinhui

    Computational Mechanics, Vol. (2024), Iss.

    https://doi.org/10.1007/s00466-024-02532-x [Citations: 0]
  254. Property-preserving numerical approximation of a Cahn–Hilliard–Navier–Stokes model with variable density and degenerate mobility

    Acosta-Soba, Daniel | Guillén-González, Francisco | Rodríguez-Galván, J. Rafael | Wang, Jin

    Applied Numerical Mathematics, Vol. 209 (2025), Iss. P.68

    https://doi.org/10.1016/j.apnum.2024.11.005 [Citations: 0]
  255. Physically consistent modelling of surface tension forces in the Volume-of-Fluid method for three or more phases

    Ruiz-Gutiérrez, Élfego | Hasslberger, Josef | Klein, Markus | Dalgarno, Kenny | Chakraborty, Nilanjan

    Journal of Computational Physics, Vol. 513 (2024), Iss. P.113149

    https://doi.org/10.1016/j.jcp.2024.113149 [Citations: 1]
  256. Phase‐field formulation of a fictitious domain method for particulate flows interacting with complex and evolving geometries

    Reder, Martin | Schneider, Daniel | Wang, Fei | Daubner, Simon | Nestler, Britta

    International Journal for Numerical Methods in Fluids, Vol. 93 (2021), Iss. 8 P.2486

    https://doi.org/10.1002/fld.4984 [Citations: 9]
  257. Magnetic field-induced control of a compound ferrofluid droplet deformation and breakup in shear flow using a hybrid lattice Boltzmann-finite difference method

    Majidi, Mohammad | Bijarchi, Mohamad Ali | Arani, Amirabbas Ghorbanpour | Rahimian, Mohammad Hassan | Shafii, Mohammad Behshad

    International Journal of Multiphase Flow, Vol. 146 (2022), Iss. P.103846

    https://doi.org/10.1016/j.ijmultiphaseflow.2021.103846 [Citations: 20]
  258. New efficient time-stepping schemes for the Navier–Stokes–Cahn–Hilliard equations

    Li, Minghui | Xu, Chuanju

    Computers & Fluids, Vol. 231 (2021), Iss. P.105174

    https://doi.org/10.1016/j.compfluid.2021.105174 [Citations: 5]
  259. Morphogens enable interacting supracellular phases that generate organ architecture

    Yang, Sichen | Palmquist, Karl H. | Nathan, Levy | Pfeifer, Charlotte R. | Schultheiss, Paula J. | Sharma, Anurag | Kam, Lance C. | Miller, Pearson W. | Shyer, Amy E. | Rodrigues, Alan R.

    Science, Vol. 382 (2023), Iss. 6673

    https://doi.org/10.1126/science.adg5579 [Citations: 14]
  260. Faraday instability of binary miscible/immiscible fluids with phase field approach

    Bestehorn, M. | Sharma, D. | Borcia, R. | Amiroudine, S.

    Physical Review Fluids, Vol. 6 (2021), Iss. 6

    https://doi.org/10.1103/PhysRevFluids.6.064002 [Citations: 10]
  261. Decoupled, linear, unconditionally energy stable and charge-conservative finite element method for an inductionless magnetohydrodynamic phase-field model

    Wang, Xiaorong | Zhang, Xiaodi

    Mathematics and Computers in Simulation, Vol. 215 (2024), Iss. P.607

    https://doi.org/10.1016/j.matcom.2023.08.039 [Citations: 2]
  262. A Parallel Finite Element Method for 3D Two-Phase Moving Contact Line Problems in Complex Domains

    Luo, Li | Zhang, Qian | Wang, Xiao-Ping | Cai, Xiao-Chuan

    Journal of Scientific Computing, Vol. 72 (2017), Iss. 3 P.1119

    https://doi.org/10.1007/s10915-017-0391-1 [Citations: 2]
  263. Conservative transport model for surfactant on the interface based on the phase-field method

    Yamashita, Shu | Matsushita, Shintaro | Suekane, Tetsuya

    Journal of Computational Physics, Vol. 516 (2024), Iss. P.113292

    https://doi.org/10.1016/j.jcp.2024.113292 [Citations: 0]
  264. Direct Discretization Method for the Cahn–Hilliard Equation on an Evolving Surface

    Li, Yibao | Qi, Xuelin | Kim, Junseok

    Journal of Scientific Computing, Vol. 77 (2018), Iss. 2 P.1147

    https://doi.org/10.1007/s10915-018-0742-6 [Citations: 19]
  265. Consistent and conservative scheme for incompressible two-phase flows using the conservative Allen-Cahn model

    Huang, Ziyang | Lin, Guang | Ardekani, Arezoo M.

    Journal of Computational Physics, Vol. 420 (2020), Iss. P.109718

    https://doi.org/10.1016/j.jcp.2020.109718 [Citations: 35]
  266. Computationally efficient adaptive time step method for the Cahn–Hilliard equation

    Li, Yibao | Choi, Yongho | Kim, Junseok

    Computers & Mathematics with Applications, Vol. 73 (2017), Iss. 8 P.1855

    https://doi.org/10.1016/j.camwa.2017.02.021 [Citations: 40]
  267. Nonlinear stability of the implicit-explicit methods for the Allen-Cahn equation

    Feng, Xinlong | Song, Huailing | Tang, Tao | Yang, Jiang

    Inverse Problems & Imaging, Vol. 7 (2013), Iss. 3 P.679

    https://doi.org/10.3934/ipi.2013.7.679 [Citations: 62]
  268. Global existence of weak solutions for a nonlocal model for two-phase flows of incompressible fluids with unmatched densities

    Frigeri, Sergio

    Mathematical Models and Methods in Applied Sciences, Vol. 26 (2016), Iss. 10 P.1955

    https://doi.org/10.1142/S0218202516500494 [Citations: 19]
  269. Regimes of evaporation and mixing behaviors of nanodroplets at transcritical conditions

    Ly, Nguyen | Majumdar, Arijit | Ihme, Matthias

    Fuel, Vol. 331 (2023), Iss. P.125870

    https://doi.org/10.1016/j.fuel.2022.125870 [Citations: 8]
  270. Towards uniformly oriented diatom frustule monolayers: Experimental and theoretical analyses

    Li, Aobo | Zhang, Wenqiang | Ghaffarivardavagh, Reza | Wang, Xiaoning | Anderson, Stephan W. | Zhang, Xin

    Microsystems & Nanoengineering, Vol. 2 (2016), Iss. 1

    https://doi.org/10.1038/micronano.2016.64 [Citations: 15]
  271. Thermocapillary-actuated contact-line motion of immiscible binary fluids over substrates with patterned wettability in narrow confinement

    DasGupta, Debabrata | Mondal, Pranab Kumar | Chakraborty, Suman

    Physical Review E, Vol. 90 (2014), Iss. 2

    https://doi.org/10.1103/PhysRevE.90.023011 [Citations: 33]
  272. Efficient fully-decoupled and fully-discrete explicit-IEQ numerical algorithm for the two-phase incompressible flow-coupled Cahn-Hilliard phase-field model

    Chen, Chuanjun | Yang, Xiaofeng

    Science China Mathematics, Vol. 67 (2024), Iss. 9 P.2171

    https://doi.org/10.1007/s11425-022-2096-x [Citations: 2]
  273. Multiphase flows of N immiscible incompressible fluids: Conservative Allen-Cahn equation and lattice Boltzmann equation method

    Zheng, Lin | Zheng, Song | Zhai, Qinglan

    Physical Review E, Vol. 101 (2020), Iss. 1

    https://doi.org/10.1103/PhysRevE.101.013305 [Citations: 16]
  274. Influence of Laser Processing Strategy and Remelting on Surface Structure and Porosity Development during Selective Laser Melting of a Metallic Material

    Qiu, Chunlei | Wang, Zhuo | Aladawi, Aiman Salim | Kindi, Mohammed Al | Hatmi, Issa Al | Chen, Hu | Chen, Lei

    Metallurgical and Materials Transactions A, Vol. 50 (2019), Iss. 9 P.4423

    https://doi.org/10.1007/s11661-019-05348-0 [Citations: 39]
  275. Energy dissipation–preserving time-dependent auxiliary variable method for the phase-field crystal and the Swift–Hohenberg models

    Yang, Junxiang | Kim, Junseok

    Numerical Algorithms, Vol. 89 (2022), Iss. 4 P.1865

    https://doi.org/10.1007/s11075-021-01176-9 [Citations: 13]
  276. Phase field modeling of partially saturated deformable porous media

    Sciarra, Giulio

    Journal of the Mechanics and Physics of Solids, Vol. 94 (2016), Iss. P.230

    https://doi.org/10.1016/j.jmps.2016.04.018 [Citations: 15]
  277. A Time Splitting Space Spectral Element Method for the Cahn-Hilliard Equation

    Chen, Lizhen | Xu, Chuanju

    East Asian Journal on Applied Mathematics, Vol. 3 (2013), Iss. 4 P.333

    https://doi.org/10.4208/eajam.150713.181113a [Citations: 7]
  278. A modified phase-field method for the investigation of wetting transitions of droplets on patterned surfaces

    Pashos, G. | Kokkoris, G. | Boudouvis, A.G.

    Journal of Computational Physics, Vol. 283 (2015), Iss. P.258

    https://doi.org/10.1016/j.jcp.2014.11.045 [Citations: 22]
  279. Consistent energy-stable method for the hydrodynamics coupled PFC model

    Yang, Junxiang | Kim, Junseok

    International Journal of Mechanical Sciences, Vol. 241 (2023), Iss. P.107952

    https://doi.org/10.1016/j.ijmecsci.2022.107952 [Citations: 1]
  280. Accurate conservative phase-field method for simulation of two-phase flows

    Jain, Suhas S.

    Journal of Computational Physics, Vol. 469 (2022), Iss. P.111529

    https://doi.org/10.1016/j.jcp.2022.111529 [Citations: 33]
  281. Multiscale model reduction for the Allen–Cahn problem in perforated domains

    Tyrylgin, Aleksei | Chen, Yaoyao | Vasilyeva, Maria | Chung, Eric T.

    Journal of Computational and Applied Mathematics, Vol. 381 (2021), Iss. P.113010

    https://doi.org/10.1016/j.cam.2020.113010 [Citations: 8]
  282. Uniqueness and Regularity for the Navier--Stokes--Cahn--Hilliard System

    Giorgini, Andrea | Miranville, Alain | Temam, Roger

    SIAM Journal on Mathematical Analysis, Vol. 51 (2019), Iss. 3 P.2535

    https://doi.org/10.1137/18M1223459 [Citations: 55]
  283. On the diffuse interface models for high codimension dispersed inclusions

    Zipunova, Elizaveta Vyacheslavovna | Savenkov, Evgeny Borisovich

    Keldysh Institute Preprints, Vol. (2020), Iss. 122 P.1

    https://doi.org/10.20948/prepr-2020-122 [Citations: 3]
  284. A consistent and conservative volume distribution algorithm and its applications to multiphase flows using Phase-Field models

    Huang, Ziyang | Lin, Guang | Ardekani, Arezoo M.

    International Journal of Multiphase Flow, Vol. 142 (2021), Iss. P.103727

    https://doi.org/10.1016/j.ijmultiphaseflow.2021.103727 [Citations: 15]
  285. Classification of ternary data using the ternary Allen–Cahn system for small datasets

    Lee, Donghun | Kim, Sangkwon | Lee, Hyun Geun | Kwak, Soobin | Wang, Jian | Kim, Junseok

    AIP Advances, Vol. 12 (2022), Iss. 6

    https://doi.org/10.1063/5.0094551 [Citations: 5]
  286. Level Set, Phase-Field, and Immersed Boundary Methods for Two-Phase Fluid Flows

    Hua, Haobo | Shin, Jaemin | Kim, Junseok

    Journal of Fluids Engineering, Vol. 136 (2014), Iss. 2

    https://doi.org/10.1115/1.4025658 [Citations: 25]
  287. Statistical Rock Physics

    The Internal Topology of Rocks

    Korvin, Gabor

    2024

    https://doi.org/10.1007/978-3-031-46700-4_3 [Citations: 0]
  288. Phase-field formulated meshless simulation of axisymmetric Rayleigh-Taylor instability problem

    Rana, K.B. | Mavrič, B. | Zahoor, R. | Šarler, B.

    Engineering Analysis with Boundary Elements, Vol. 169 (2024), Iss. P.105953

    https://doi.org/10.1016/j.enganabound.2024.105953 [Citations: 0]
  289. Radial basis function and multi-level 2D vector field approximation

    Smolik, Michal | Skala, Vaclav

    Mathematics and Computers in Simulation, Vol. 181 (2021), Iss. P.522

    https://doi.org/10.1016/j.matcom.2020.10.009 [Citations: 3]
  290. Influence of Liquid Density and Surface Tension on the Pinning of Sliding Droplets on a Triangular Microstructure

    Bonart, Henning | Jung, Johannes | Kahle, Christian | Repke, Jens-Uwe

    Chemical Engineering & Technology, Vol. 42 (2019), Iss. 7 P.1381

    https://doi.org/10.1002/ceat.201900029 [Citations: 6]
  291. A Novel Lattice Boltzmann Model for Fourth Order Nonlinear Partial Differential Equations

    Qiao, Zhonghua | Yang, Xuguang | Zhang, Yuze

    Journal of Scientific Computing, Vol. 87 (2021), Iss. 2

    https://doi.org/10.1007/s10915-021-01471-6 [Citations: 2]
  292. From classical thermodynamics to phase-field method

    Chen, Long-Qing | Zhao, Yuhong

    Progress in Materials Science, Vol. 124 (2022), Iss. P.100868

    https://doi.org/10.1016/j.pmatsci.2021.100868 [Citations: 221]
  293. Interactions on the Interface between Two Liquid Crystal Materials

    Geršak, Rok | Čopar, Simon

    Crystals, Vol. 10 (2020), Iss. 5 P.393

    https://doi.org/10.3390/cryst10050393 [Citations: 3]
  294. Discontinuous finite volume element method for a coupled Navier-Stokes-Cahn-Hilliard phase field model

    Li, Rui | Gao, Yali | Chen, Jie | Zhang, Li | He, Xiaoming | Chen, Zhangxin

    Advances in Computational Mathematics, Vol. 46 (2020), Iss. 2

    https://doi.org/10.1007/s10444-020-09764-4 [Citations: 18]
  295. A novel linear, unconditional energy stable scheme for the incompressible Cahn–Hilliard–Navier–Stokes phase-field model

    Jia, Hongen | Wang, Xue | Li, Kaitai

    Computers & Mathematics with Applications, Vol. 80 (2020), Iss. 12 P.2948

    https://doi.org/10.1016/j.camwa.2020.10.006 [Citations: 3]
  296. Thermodynamically consistent phase-field modelling of activated solute transport in binary solvent fluids

    Kou, Jisheng | Salama, Amgad | Wang, Xiuhua

    Journal of Fluid Mechanics, Vol. 955 (2023), Iss.

    https://doi.org/10.1017/jfm.2023.8 [Citations: 4]
  297. Comparison study of the conservative Allen–Cahn and the Cahn–Hilliard equations

    Lee, Dongsun | Kim, Junseok

    Mathematics and Computers in Simulation, Vol. 119 (2016), Iss. P.35

    https://doi.org/10.1016/j.matcom.2015.08.018 [Citations: 46]
  298. An efficient algorithm for incompressible N-phase flows

    Dong, S.

    Journal of Computational Physics, Vol. 276 (2014), Iss. P.691

    https://doi.org/10.1016/j.jcp.2014.08.002 [Citations: 52]
  299. The hydrothermal performance of non-Newtonian fluids in superhydrophobic microchannels

    Shahsavari, Arghavan | Pakzad, Hossein | Moosavi, Ali

    Physics of Fluids, Vol. 36 (2024), Iss. 3

    https://doi.org/10.1063/5.0188739 [Citations: 0]
  300. A consistent and conservative model and its scheme for N-phase-M-component incompressible flows

    Huang, Ziyang | Lin, Guang | Ardekani, Arezoo M.

    Journal of Computational Physics, Vol. 434 (2021), Iss. P.110229

    https://doi.org/10.1016/j.jcp.2021.110229 [Citations: 19]
  301. Conservative Allen–Cahn equation with a nonstandard variable mobility

    Yang, Junxiang | Li, Yibao | Lee, Chaeyoung | Kim, Junseok

    Acta Mechanica, Vol. 231 (2020), Iss. 2 P.561

    https://doi.org/10.1007/s00707-019-02548-y [Citations: 4]
  302. Homogenization of evolutionary Stokes–Cahn–Hilliard equations for two-phase porous media flow

    Baňas, Ľubomír | Mahato, Hari Shankar

    Asymptotic Analysis, Vol. 105 (2017), Iss. 1-2 P.77

    https://doi.org/10.3233/ASY-171436 [Citations: 4]
  303. Well-posedness for the Brinkman–Cahn–Hilliard system with unmatched viscosities

    Conti, Monica | Giorgini, Andrea

    Journal of Differential Equations, Vol. 268 (2020), Iss. 10 P.6350

    https://doi.org/10.1016/j.jde.2019.11.049 [Citations: 22]
  304. Wetting boundaries for a ternary high-density-ratio lattice Boltzmann method

    Bala, Neeru | Pepona, Marianna | Karlin, Ilya | Kusumaatmaja, Halim | Semprebon, Ciro

    Physical Review E, Vol. 100 (2019), Iss. 1

    https://doi.org/10.1103/PhysRevE.100.013308 [Citations: 24]
  305. Comparison of high order finite element and discontinuous Galerkin methods for phase field equations: Application to structural damage

    Chiarelli, L.R. | Fumes, F.G. | Moraes, E.A. Barros de | Haveroth, G.A. | Boldrini, J.L. | Bittencourt, M.L.

    Computers & Mathematics with Applications, Vol. 74 (2017), Iss. 7 P.1542

    https://doi.org/10.1016/j.camwa.2017.05.003 [Citations: 10]
  306. Ternary modeling of the interaction between immiscible droplets in a confined shear flow

    Liu, Wankun | Park, Jang Min

    Physical Review Fluids, Vol. 7 (2022), Iss. 1

    https://doi.org/10.1103/PhysRevFluids.7.013604 [Citations: 4]
  307. Numerical Approximations for the Cahn–Hilliard Phase Field Model of the Binary Fluid-Surfactant System

    Yang, Xiaofeng

    Journal of Scientific Computing, Vol. 74 (2018), Iss. 3 P.1533

    https://doi.org/10.1007/s10915-017-0508-6 [Citations: 52]
  308. An explicit conservative Saul’yev scheme for the Cahn–Hilliard equation

    Yang, Junxiang | Li, Yibao | Lee, Chaeyoung | Lee, Hyun Geun | Kwak, Soobin | Hwang, Youngjin | Xin, Xuan | Kim, Junseok

    International Journal of Mechanical Sciences, Vol. 217 (2022), Iss. P.106985

    https://doi.org/10.1016/j.ijmecsci.2021.106985 [Citations: 12]
  309. A Darcy–Cahn–Hilliard model of multiphase fluid-driven fracture

    Guével, Alexandre | Meng, Yue | Peco, Christian | Juanes, Ruben | Dolbow, John E.

    Journal of the Mechanics and Physics of Solids, Vol. 181 (2023), Iss. P.105427

    https://doi.org/10.1016/j.jmps.2023.105427 [Citations: 2]
  310. Influence of density and viscosity on deformation, breakage, and coalescence of bubbles in turbulence

    Mangani, Francesca | Soligo, Giovanni | Roccon, Alessio | Soldati, Alfredo

    Physical Review Fluids, Vol. 7 (2022), Iss. 5

    https://doi.org/10.1103/PhysRevFluids.7.053601 [Citations: 13]
  311. A computational method to simulate mono- and poly-disperse two-dimensional foams flowing in obstructed channel

    Lavoratti, Thales Carl | Heitkam, Sascha | Hampel, Uwe | Lecrivain, Gregory

    Rheologica Acta, Vol. 60 (2021), Iss. 10 P.587

    https://doi.org/10.1007/s00397-021-01288-y [Citations: 3]
  312. A Review of Multiscale Computational Methods in Polymeric Materials

    Gooneie, Ali | Schuschnigg, Stephan | Holzer, Clemens

    Polymers, Vol. 9 (2017), Iss. 1 P.16

    https://doi.org/10.3390/polym9010016 [Citations: 155]
  313. Viscosity-modulated breakup and coalescence of large drops in bounded turbulence

    Roccon, Alessio | De Paoli, Marco | Zonta, Francesco | Soldati, Alfredo

    Physical Review Fluids, Vol. 2 (2017), Iss. 8

    https://doi.org/10.1103/PhysRevFluids.2.083603 [Citations: 39]
  314. Reduction-consistent multiple-relaxation-time lattice Boltzmann equation method for wall bounded N immiscible incompressible fluids

    Zheng, Lin | Zheng, Song | Zhai, Qinglan

    Computers & Fluids, Vol. 221 (2021), Iss. P.104896

    https://doi.org/10.1016/j.compfluid.2021.104896 [Citations: 1]
  315. On Nonlocal Cahn–Hilliard–Navier–Stokes Systems in Two Dimensions

    Frigeri, Sergio | Gal, Ciprian G. | Grasselli, Maurizio

    Journal of Nonlinear Science, Vol. 26 (2016), Iss. 4 P.847

    https://doi.org/10.1007/s00332-016-9292-y [Citations: 46]
  316. An Explicit Hybrid Method for the Nonlocal Allen–Cahn Equation

    Lee, Chaeyoung | Yoon, Sungha | Park, Jintae | Kim, Junseok

    Symmetry, Vol. 12 (2020), Iss. 8 P.1218

    https://doi.org/10.3390/sym12081218 [Citations: 3]
  317. A phase field model for partially saturated geomaterials describing fluid–fluid displacements. Part I: The model and one-dimensional analysis

    Ommi, Siddhartha H. | Sciarra, Giulio | Kotronis, Panagiotis

    Advances in Water Resources, Vol. 164 (2022), Iss. P.104170

    https://doi.org/10.1016/j.advwatres.2022.104170 [Citations: 5]
  318. Numerical investigations of electrothermally actuated moving contact line dynamics: Effect of property contrasts

    Kunti, Golak | Bhattacharya, Anandaroop | Chakraborty, Suman

    Physics of Fluids, Vol. 29 (2017), Iss. 8

    https://doi.org/10.1063/1.4999922 [Citations: 12]
  319. Multi–component Cahn–Hilliard Systems with Singular Potentials: Theoretical Results

    Gal, C. G. | Grasselli, M. | Poiatti, A. | Shomberg, J. L.

    Applied Mathematics & Optimization, Vol. 88 (2023), Iss. 3

    https://doi.org/10.1007/s00245-023-10048-8 [Citations: 2]
  320. Turbulent Drag Reduction by a Near Wall Surface Tension Active Interface

    Ahmadi, Somayeh | Roccon, Alessio | Zonta, Francesco | Soldati, Alfredo

    Flow, Turbulence and Combustion, Vol. 100 (2018), Iss. 4 P.979

    https://doi.org/10.1007/s10494-018-9918-2 [Citations: 7]
  321. Phase field analysis of binary mixtures with partially miscible components

    Ghaemi, A. | Hübner, M. | Minceva, M. | Germann, N.

    International Journal of Multiphase Flow, Vol. 138 (2021), Iss. P.103613

    https://doi.org/10.1016/j.ijmultiphaseflow.2021.103613 [Citations: 0]
  322. Reduction-consistent phase-field lattice Boltzmann equation for N immiscible incompressible fluids

    Zheng, Lin | Zheng, Song | Zhai, Qinglan

    Physical Review E, Vol. 101 (2020), Iss. 4

    https://doi.org/10.1103/PhysRevE.101.043302 [Citations: 12]
  323. A rapid diffusion simulation method of multiple‐fluid coupling combined with MPM and PFM

    Zhao, Jing | Sun, Mengmeng | Wang, Feng | Wang, Xiaolong | Zhang, Jian | Tang, Yong

    Computer Animation and Virtual Worlds, Vol. 34 (2023), Iss. 6

    https://doi.org/10.1002/cav.2142 [Citations: 0]
  324. Computational Science and Its Applications – ICCSA 2024 Workshops

    Construction of Relative Permeability Curves by Numerical Simulation of Two-Phase Flow in 3D CT-Models

    Khachkova, Tatyana | Lisitsa, Vadim

    2024

    https://doi.org/10.1007/978-3-031-65238-7_17 [Citations: 0]
  325. Analysis of a Linearized Energy Stable Numerical Scheme for a Modified Incompressible Cahn-Hilliard-Navier-Stokes System

    Wang, Xue | Jia, Hong-en | Li, Ming | Li, Kai-tai

    Acta Mathematicae Applicatae Sinica, English Series, Vol. 39 (2023), Iss. 3 P.605

    https://doi.org/10.1007/s10255-023-1066-3 [Citations: 0]
  326. Terminal shape and velocity of a rising bubble by phase-field-based incompressible Lattice Boltzmann model

    Ren, Feng | Song, Baowei | Sukop, Michael C.

    Advances in Water Resources, Vol. 97 (2016), Iss. P.100

    https://doi.org/10.1016/j.advwatres.2016.08.012 [Citations: 14]
  327. A Simple Parallel Solution Method for the Navier–Stokes Cahn–Hilliard Equations

    Adam, Nadja | Franke, Florian | Aland, Sebastian

    Mathematics, Vol. 8 (2020), Iss. 8 P.1224

    https://doi.org/10.3390/math8081224 [Citations: 8]
  328. Phase-field modeling of complex interface dynamics in drop-laden turbulence

    Roccon, Alessio | Zonta, Francesco | Soldati, Alfredo

    Physical Review Fluids, Vol. 8 (2023), Iss. 9

    https://doi.org/10.1103/PhysRevFluids.8.090501 [Citations: 11]
  329. An energy stable linear numerical method for thermodynamically consistent modeling of two-phase incompressible flow in porous media

    Kou, Jisheng | Wang, Xiuhua | Du, Shigui | Sun, Shuyu

    Journal of Computational Physics, Vol. 451 (2022), Iss. P.110854

    https://doi.org/10.1016/j.jcp.2021.110854 [Citations: 16]
  330. Efficient, non-iterative, and second-order accurate numerical algorithms for the anisotropic Allen–Cahn Equation with precise nonlocal mass conservation

    Zhang, Jun | Chen, Chuanjun | Yang, Xiaofeng | Chu, Yuchuan | Xia, Zeyu

    Journal of Computational and Applied Mathematics, Vol. 363 (2020), Iss. P.444

    https://doi.org/10.1016/j.cam.2019.05.003 [Citations: 21]
  331. Fourier-Spectral Method for the Phase-Field Equations

    Yoon, Sungha | Jeong, Darae | Lee, Chaeyoung | Kim, Hyundong | Kim, Sangkwon | Lee, Hyun Geun | Kim, Junseok

    Mathematics, Vol. 8 (2020), Iss. 8 P.1385

    https://doi.org/10.3390/math8081385 [Citations: 29]
  332. MorphoSim: an efficient and scalable phase-field framework for accurately simulating multicellular morphologies

    Kuang, Xiangyu | Guan, Guoye | Tang, Chao | Zhang, Lei

    npj Systems Biology and Applications, Vol. 9 (2023), Iss. 1

    https://doi.org/10.1038/s41540-023-00265-w [Citations: 6]
  333. Two-dimensional nonlocal Cahn–Hilliard–Navier–Stokes systems with variable viscosity, degenerate mobility and singular potential

    Frigeri, S | Gal, C G | Grasselli, M | Sprekels, J

    Nonlinearity, Vol. 32 (2019), Iss. 2 P.678

    https://doi.org/10.1088/1361-6544/aaedd0 [Citations: 26]
  334. Mathematical Model and Numerical Simulation for Tissue Growth on Bioscaffolds

    Lee, Hyun Geun | Park, Jintae | Yoon, Sungha | Lee, Chaeyoung | Kim, Junseok

    Applied Sciences, Vol. 9 (2019), Iss. 19 P.4058

    https://doi.org/10.3390/app9194058 [Citations: 13]
  335. Advances of Phase-Field Model in the Numerical Simulation of Multiphase Flows: A Review

    Li, Jingfa | Zheng, Dukui | Zhang, Wei

    Atmosphere, Vol. 14 (2023), Iss. 8 P.1311

    https://doi.org/10.3390/atmos14081311 [Citations: 4]
  336. On Maxwell–Stefan diffusion in Smoothed Particle Hydrodynamics

    Hirschler, Manuel | Säckel, Winfried | Nieken, Ulrich

    International Journal of Heat and Mass Transfer, Vol. 103 (2016), Iss. P.548

    https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.061 [Citations: 14]
  337. Phase-field modeling and consistent energy-stable simulation of binary creeping flows in contact with solid

    Yang, Junxiang | Wu, Jingwen | Tan, Zhijun

    Computer Methods in Applied Mechanics and Engineering, Vol. 414 (2023), Iss. P.116180

    https://doi.org/10.1016/j.cma.2023.116180 [Citations: 2]
  338. Numerical simulation of single droplet dynamics in three-phase flows using ISPH

    Tofighi, Nima | Yildiz, Mehmet

    Computers & Mathematics with Applications, Vol. 66 (2013), Iss. 4 P.525

    https://doi.org/10.1016/j.camwa.2013.05.012 [Citations: 46]
  339. An explicitness-preserving IMEX-split multiderivative method

    Theodosiou, Eleni | Schütz, Jochen | Seal, David

    Computers & Mathematics with Applications, Vol. 158 (2024), Iss. P.139

    https://doi.org/10.1016/j.camwa.2023.12.040 [Citations: 1]
  340. Derivation and analysis of a nonlocal Hele–Shaw–Cahn–Hilliard system for flow in thin heterogeneous layers

    Cardone, Giuseppe | Jäger, Willi | Woukeng, Jean Louis

    Mathematical Models and Methods in Applied Sciences, Vol. 34 (2024), Iss. 07 P.1343

    https://doi.org/10.1142/S0218202524500246 [Citations: 0]
  341. Phase-field-based lattice Boltzmann method for two-phase flows with interfacial mass or heat transfer

    Chen, Baihui | Zhan, Chengjie | Chai, Zhenhua | Shi, Baochang

    Physical Review E, Vol. 110 (2024), Iss. 1

    https://doi.org/10.1103/PhysRevE.110.015307 [Citations: 0]
  342. Numerical Prediction of Storage Stability of Polymer-Modified Bitumen: A Coupled Model of Gravity-Driven Flow and Diffusion

    Zhu, Jiqing | Balieu, Romain | Lu, Xiaohu | Kringos, Niki

    Transportation Research Record: Journal of the Transportation Research Board, Vol. 2632 (2017), Iss. 1 P.70

    https://doi.org/10.3141/2632-08 [Citations: 7]
  343. On a nonlocal Cahn-Hilliard/Navier-Stokes system with degenerate mobility and singular potential for incompressible fluids with different densities

    Frigeri, Sergio

    Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Vol. 38 (2021), Iss. 3 P.647

    https://doi.org/10.1016/j.anihpc.2020.08.005 [Citations: 12]
  344. An Energy Stable Immersed Boundary Method for Deformable Membrane Problem with Non-uniform Density and Viscosity

    Wang, Qinghe | Pan, Mingyang | Tseng, Yu-Hau | He, Dongdong

    Journal of Scientific Computing, Vol. 94 (2023), Iss. 2

    https://doi.org/10.1007/s10915-022-02092-3 [Citations: 0]
  345. Efficient, second-order in time, and energy stable scheme for a new hydrodynamically coupled three components volume-conserved Allen–Cahn phase-field model

    Yang, Xiaofeng

    Mathematical Models and Methods in Applied Sciences, Vol. 31 (2021), Iss. 04 P.753

    https://doi.org/10.1142/S0218202521500184 [Citations: 9]
  346. Three dimensional phase-field investigation of droplet formation in microfluidic flow focusing devices with experimental validation

    Bai, Feng | He, Xiaoming | Yang, Xiaofeng | Zhou, Ran | Wang, Cheng

    International Journal of Multiphase Flow, Vol. 93 (2017), Iss. P.130

    https://doi.org/10.1016/j.ijmultiphaseflow.2017.04.008 [Citations: 92]
  347. Higher order spectral element scheme for two- and three-dimensional Cahn–Hilliard equation

    Jagtap, Ameya D. | Murthy, A. S. Vasudeva

    International Journal of Advances in Engineering Sciences and Applied Mathematics, Vol. 10 (2018), Iss. 1 P.79

    https://doi.org/10.1007/s12572-018-0210-4 [Citations: 1]
  348. MULTISCALE, MULTIPHYSICS AND MULTIDOMAIN MODELS I: BASIC THEORY

    WEI, GUO-WEI

    Journal of Theoretical and Computational Chemistry, Vol. 12 (2013), Iss. 08 P.1341006

    https://doi.org/10.1142/S021963361341006X [Citations: 34]
  349. Phase-field method of materials microstructures and properties

    Chen, Long-Qing | Moelans, Nele

    MRS Bulletin, Vol. 49 (2024), Iss. 6 P.551

    https://doi.org/10.1557/s43577-024-00724-7 [Citations: 1]
  350. A pressure-correction and bound-preserving discretization of the phase-field method for variable density two-phase flows

    Liu, Chen | Ray, Deep | Thiele, Christopher | Lin, Lu | Riviere, Beatrice

    Journal of Computational Physics, Vol. 449 (2022), Iss. P.110769

    https://doi.org/10.1016/j.jcp.2021.110769 [Citations: 7]
  351. Highly efficient time-marching method with enhanced energy consistency for the L2-gradient flow based two-phase incompressible fluid system

    Wang, Shuman | Yang, Junxiang | Pan, Xiaomin

    Computers & Mathematics with Applications, Vol. 139 (2023), Iss. P.68

    https://doi.org/10.1016/j.camwa.2023.03.008 [Citations: 2]
  352. An unconditionally energy-stable second-order time-accurate scheme for the Cahn–Hilliard equation on surfaces

    Li, Yibao | Kim, Junseok | Wang, Nan

    Communications in Nonlinear Science and Numerical Simulation, Vol. 53 (2017), Iss. P.213

    https://doi.org/10.1016/j.cnsns.2017.05.006 [Citations: 48]
  353. Eulerian/Lagrangian formulation for the elasto-capillary deformation of a flexible fibre

    Lecrivain, Gregory | Grein, Taisa Beatriz Pacheco | Yamamoto, Ryoichi | Hampel, Uwe | Taniguchi, Takashi

    Journal of Computational Physics, Vol. 409 (2020), Iss. P.109324

    https://doi.org/10.1016/j.jcp.2020.109324 [Citations: 10]
  354. Linear, Second-Order Accurate, and Energy Stable Scheme for a Ternary Cahn–Hilliard Model by Using Lagrange Multiplier Approach

    Yang, Junxiang | Kim, Junseok

    Acta Applicandae Mathematicae, Vol. 172 (2021), Iss. 1

    https://doi.org/10.1007/s10440-021-00405-6 [Citations: 12]
  355. On suitability of phase-field and algebraic volume-of-fluid OpenFOAM® solvers for gas–liquid microfluidic applications

    Jamshidi, F. | Heimel, H. | Hasert, M. | Cai, X. | Deutschmann, O. | Marschall, H. | Wörner, M.

    Computer Physics Communications, Vol. 236 (2019), Iss. P.72

    https://doi.org/10.1016/j.cpc.2018.10.015 [Citations: 31]
  356. Progress Report on Phase Separation in Polymer Solutions

    Wang, Fei | Altschuh, Patrick | Ratke, Lorenz | Zhang, Haodong | Selzer, Michael | Nestler, Britta

    Advanced Materials, Vol. 31 (2019), Iss. 26

    https://doi.org/10.1002/adma.201806733 [Citations: 106]
  357. A fast and practical adaptive finite difference method for the conservative Allen–Cahn model in two-phase flow system

    Yang, Junxiang | Jeong, Darae | Kim, Junseok

    International Journal of Multiphase Flow, Vol. 137 (2021), Iss. P.103561

    https://doi.org/10.1016/j.ijmultiphaseflow.2021.103561 [Citations: 16]
  358. Molecular simulation guided constitutive modeling of filled rubber: Bridging structural parameters to constitutive equations

    Yuan, Bin | Zeng, Fanlin | Cui, Jianzheng | Wang, Youshan

    Polymer, Vol. 254 (2022), Iss. P.125090

    https://doi.org/10.1016/j.polymer.2022.125090 [Citations: 6]
  359. Modeling of Pore-Scale Two-Phase Phenomena Using Density Functional Hydrodynamics

    Armstrong, R. T. | Berg, S. | Dinariev, O. | Evseev, N. | Klemin, D. | Koroteev, D. | Safonov, S.

    Transport in Porous Media, Vol. 112 (2016), Iss. 3 P.577

    https://doi.org/10.1007/s11242-016-0660-8 [Citations: 55]
  360. The Phase Transition Model for Heat-Shrinkable Thermo-Sensitive Hydrogels Based on Interaction Energy

    Peng, Qiujin | Zhang, Hui | Zhang, Zhengru

    Communications in Computational Physics, Vol. 17 (2015), Iss. 2 P.594

    https://doi.org/10.4208/cicp.050414.061014a [Citations: 2]
  361. Experimental-based modeling of complex mixtures

    Germann, Natalie

    Science Talks, Vol. 3 (2022), Iss. P.100055

    https://doi.org/10.1016/j.sctalk.2022.100055 [Citations: 0]
  362. Decoupled, Energy Stable Schemes for Phase-Field Models of Two-Phase Incompressible Flows

    Shen, Jie | Yang, Xiaofeng

    SIAM Journal on Numerical Analysis, Vol. 53 (2015), Iss. 1 P.279

    https://doi.org/10.1137/140971154 [Citations: 203]
  363. Computationally Efficient and Interface Accurate Dual-Grid Phase-Field Simulation of Turbulent Drop-Laden Flows

    Schenk, Maximilian | Giamagas, Georgios | Roccon, Alessio | Soldati, Alfredo | Zonta, Francesco

    Journal of Fluids Engineering, Vol. 146 (2024), Iss. 12

    https://doi.org/10.1115/1.4065504 [Citations: 0]
  364. A phase-field method for two-phase fluid flow in arbitrary domains

    Yang, Junxiang | Kim, Junseok

    Computers & Mathematics with Applications, Vol. 79 (2020), Iss. 6 P.1857

    https://doi.org/10.1016/j.camwa.2019.10.008 [Citations: 11]
  365. Turbulence and Interface Waves in Stratified Oil–Water Channel Flow at Large Viscosity Ratio

    Giamagas, Georgios | Zonta, Francesco | Roccon, Alessio | Soldati, Alfredo

    Flow, Turbulence and Combustion, Vol. 112 (2024), Iss. 1 P.15

    https://doi.org/10.1007/s10494-023-00478-3 [Citations: 4]
  366. A second-order decoupled energy stable numerical scheme for Cahn-Hilliard-Hele-Shaw system

    Gao, Yali | Li, Rui | Mei, Liquan | Lin, Yanping

    Applied Numerical Mathematics, Vol. 157 (2020), Iss. P.338

    https://doi.org/10.1016/j.apnum.2020.06.010 [Citations: 17]
  367. A finite volume / discontinuous Galerkin method for the advective Cahn–Hilliard equation with degenerate mobility on porous domains stemming from micro-CT imaging

    Frank, Florian | Liu, Chen | Alpak, Faruk O. | Riviere, Beatrice

    Computational Geosciences, Vol. 22 (2018), Iss. 2 P.543

    https://doi.org/10.1007/s10596-017-9709-1 [Citations: 29]
  368. Compact Empirical Model for Droplet Generation in a Lab-on-Chip Cytometry System

    Parnamets, Kaiser | Udal, Andres | Koel, Ants | Pardy, Tamas | Gyimah, Nafisat | Rang, Toomas

    IEEE Access, Vol. 10 (2022), Iss. P.127708

    https://doi.org/10.1109/ACCESS.2022.3226623 [Citations: 1]
  369. Unifying binary fluid diffuse-interface models in the sharp-interface limit

    Sibley, David N. | Nold, Andreas | Kalliadasis, Serafim

    Journal of Fluid Mechanics, Vol. 736 (2013), Iss. P.5

    https://doi.org/10.1017/jfm.2013.521 [Citations: 23]
  370. A phase-field fluid modeling and computation with interfacial profile correction term

    Li, Yibao | Choi, Jung-Il | Kim, Junseok

    Communications in Nonlinear Science and Numerical Simulation, Vol. 30 (2016), Iss. 1-3 P.84

    https://doi.org/10.1016/j.cnsns.2015.06.012 [Citations: 53]
  371. A Multi-Electrode Pixel Structure for Quick-Response Electrowetting Displays

    Tian, Lixia | Lai, Shufa | Zhang, Taiyuan | Li, Wei | Tang, Biao | Zhou, Guofu

    Micromachines, Vol. 13 (2022), Iss. 7 P.1103

    https://doi.org/10.3390/mi13071103 [Citations: 2]
  372. Numerical simulation of jet mode in electrospraying of Newtonian and viscoelastic fluids

    Panahi, Amirreza | Pishevar, Ahmad Reza | Tavakoli, Mohammad Reza

    International Journal of Multiphase Flow, Vol. 129 (2020), Iss. P.103302

    https://doi.org/10.1016/j.ijmultiphaseflow.2020.103302 [Citations: 15]
  373. Isogeometric analysis for a phase-field constrained optimization problem of morphological evolution of vesicles in electrical fields

    Ashour, Mohammed | Valizadeh, Navid | Rabczuk, Timon

    Computer Methods in Applied Mechanics and Engineering, Vol. 377 (2021), Iss. P.113669

    https://doi.org/10.1016/j.cma.2021.113669 [Citations: 22]
  374. A Correct Benchmark Problem of a Two-Dimensional Droplet Deformation in Simple Shear Flow

    Yang, Junxiang | Li, Yibao | Kim, Junseok

    Mathematics, Vol. 10 (2022), Iss. 21 P.4092

    https://doi.org/10.3390/math10214092 [Citations: 5]
  375. Numerical simulations of the dynamics of axisymmetric compound liquid threads with a phase-field model

    Yang, Junxiang | Li, Yibao | Lee, Chaeyoung | Kim, Junseok

    European Journal of Mechanics - B/Fluids, Vol. 89 (2021), Iss. P.203

    https://doi.org/10.1016/j.euromechflu.2021.06.001 [Citations: 4]
  376. Linear and Energy-Stable Method with Enhanced Consistency for the Incompressible Cahn–Hilliard–Navier–Stokes Two-Phase Flow Model

    Huang, Qiming | Yang, Junxiang

    Mathematics, Vol. 10 (2022), Iss. 24 P.4711

    https://doi.org/10.3390/math10244711 [Citations: 1]
  377. Direct simulation of pore-scale two-phase visco-capillary flow on large digital rock images using a phase-field lattice Boltzmann method on general-purpose graphics processing units

    Alpak, F. O. | Zacharoudiou, I. | Berg, S. | Dietderich, J. | Saxena, N.

    Computational Geosciences, Vol. 23 (2019), Iss. 5 P.849

    https://doi.org/10.1007/s10596-019-9818-0 [Citations: 41]
  378. Simulation of Incompressible Free Surface Flow Using the Volume Preserving Level Set Method

    Yu, Ching-Hao | Sheu, Tony Wen-Hann

    Communications in Computational Physics, Vol. 18 (2015), Iss. 4 P.931

    https://doi.org/10.4208/cicp.081214.240515s [Citations: 5]
  379. Arbitrarily high order structure-preserving algorithms for the Allen-Cahn model with a nonlocal constraint

    Hong, Qi | Gong, Yuezheng | Zhao, Jia | Wang, Qi

    Applied Numerical Mathematics, Vol. 170 (2021), Iss. P.321

    https://doi.org/10.1016/j.apnum.2021.08.002 [Citations: 8]
  380. Fast multiple-fluid simulation using Helmholtz free energy

    Yang, Tao | Chang, Jian | Ren, Bo | Lin, Ming C. | Zhang, Jian Jun | Hu, Shi-Min

    ACM Transactions on Graphics, Vol. 34 (2015), Iss. 6 P.1

    https://doi.org/10.1145/2816795.2818117 [Citations: 36]
  381. Effect of physical properties on the dynamics of an isolated bubble squeezing through a narrow constriction

    Yi, Tianhao | Zhang, Wanyu | Qiu, Yinan | Lei, Gang | Yu, Yuanzhong | Wu, Jingyi | Yang, Guang

    International Journal of Multiphase Flow, Vol. 169 (2023), Iss. P.104601

    https://doi.org/10.1016/j.ijmultiphaseflow.2023.104601 [Citations: 0]
  382. Dynamic behaviors of nanoscale binary water droplets simultaneously impacting on flat surface

    Yin, Zong-jun | Ding, Zheng-long | Zhang, Wen-feng | Su, Rong | Chai, Fu-tong | Yu, Peng

    Computational Materials Science, Vol. 183 (2020), Iss. P.109814

    https://doi.org/10.1016/j.commatsci.2020.109814 [Citations: 9]
  383. Free‐energy lattice Boltzmann simulations of slicing of rising droplets

    Cao, Jiawei | Liu, Fengjiao | Wang, Shipeng | Li, Xiang | Zhang, Lijuan | Lu, Jie | Derksen, Jos J.

    The Canadian Journal of Chemical Engineering, Vol. 102 (2024), Iss. 2 P.925

    https://doi.org/10.1002/cjce.25066 [Citations: 0]
  384. Mode-coupled perturbation growth on the interfaces of cylindrical implosion: A comparison between theory and experiment

    Zhang, Xinyu | Zhang, Shuai | Yan, Zixiang | Duan, Huiling | Ding, Yongkun | Kang, Wei

    Physical Review E, Vol. 109 (2024), Iss. 3

    https://doi.org/10.1103/PhysRevE.109.035203 [Citations: 0]
  385. Development of a numerical workflow based on <i>μ</i>-CT imaging for the determination of capillary pressure–saturation-specific interfacial area relationship in 2-phase flow pore-scale porous-media systems: a case study on Heletz sandstone

    Peche, Aaron | Halisch, Matthias | Bogdan Tatomir, Alexandru | Sauter, Martin

    Solid Earth, Vol. 7 (2016), Iss. 3 P.727

    https://doi.org/10.5194/se-7-727-2016 [Citations: 9]
  386. Homogenization of a coupled incompressible Stokes–Cahn–Hilliard system modeling binary fluid mixture in a porous medium

    Lakhmara, Nitu | Mahato, Hari Shankar

    Nonlinear Analysis, Vol. 222 (2022), Iss. P.112927

    https://doi.org/10.1016/j.na.2022.112927 [Citations: 1]
  387. Energy-decreasing exponential time differencing Runge–Kutta methods for phase-field models

    Fu, Zhaohui | Yang, Jiang

    Journal of Computational Physics, Vol. 454 (2022), Iss. P.110943

    https://doi.org/10.1016/j.jcp.2022.110943 [Citations: 36]
  388. Phase field modeling and computation of multi-component droplet evaporation

    Yang, Junxiang

    Computer Methods in Applied Mechanics and Engineering, Vol. 401 (2022), Iss. P.115675

    https://doi.org/10.1016/j.cma.2022.115675 [Citations: 7]
  389. Experimental and Numerical Investigation on the Phase Separation Affected by Cooling Rates and Marangoni Convection in Cu-Cr Alloys

    Wang, Fei | von Klinski-Wetzel, Katharina | Mukherjee, Rajdip | Nestler, Britta | Heilmaier, Martin

    Metallurgical and Materials Transactions A, Vol. 46 (2015), Iss. 4 P.1756

    https://doi.org/10.1007/s11661-015-2745-3 [Citations: 6]
  390. Efficient IMEX and consistently energy-stable methods of diffuse-interface models for incompressible three-component flows

    Yang, Junxiang | Wang, Jian | Tan, Zhijun | Kim, Junseok

    Computer Physics Communications, Vol. 282 (2023), Iss. P.108558

    https://doi.org/10.1016/j.cpc.2022.108558 [Citations: 8]
  391. On differences between deterministic and statistical models of the interphase region

    Wacławczyk, Tomasz

    Acta Mechanica Sinica, Vol. 38 (2022), Iss. 8

    https://doi.org/10.1007/s10409-022-22045-w [Citations: 3]
  392. A novel fully decoupled scheme with second‐order time accuracy and unconditional energy stability for the Navier‐Stokes equations coupled with mass‐conserved Allen‐Cahn phase‐field model of two‐phase incompressible flow

    Yang, Xiaofeng

    International Journal for Numerical Methods in Engineering, Vol. (2020), Iss.

    https://doi.org/10.1002/nme.6578 [Citations: 9]
  393. A novel technique for minimizing energy functional using neural networks

    Poudel, Sanjeeb | Wang, Xiaoqiang | Lee, Sanghyun

    Engineering Applications of Artificial Intelligence, Vol. 133 (2024), Iss. P.108313

    https://doi.org/10.1016/j.engappai.2024.108313 [Citations: 0]
  394. Linear energy stable and maximum principle preserving semi-implicit scheme for Allen–Cahn equation with double well potential

    Wang, Xiuhua | Kou, Jisheng | Gao, Huicai

    Communications in Nonlinear Science and Numerical Simulation, Vol. 98 (2021), Iss. P.105766

    https://doi.org/10.1016/j.cnsns.2021.105766 [Citations: 39]
  395. Bracket formulations and energy- and helicity-preserving numerical methods for incompressible two-phase flows

    Suzuki, Yukihito

    Journal of Computational Physics, Vol. 356 (2018), Iss. P.64

    https://doi.org/10.1016/j.jcp.2017.11.034 [Citations: 2]
  396. Numerical analysis of pressure drop reduction of bubbly flows through hydrophobic microgrooved channels

    Javaherchian, Javane | Moosavi, Ali | Tabatabaei, Seyed Ali

    Scientific Reports, Vol. 13 (2023), Iss. 1

    https://doi.org/10.1038/s41598-023-45260-7 [Citations: 1]
  397. Fully discrete energy stable scheme for a phase-field moving contact line model with variable densities and viscosities

    Zhu, Guangpu | Chen, Huangxin | Li, Aifen | Sun, Shuyu | Yao, Jun

    Applied Mathematical Modelling, Vol. 83 (2020), Iss. P.614

    https://doi.org/10.1016/j.apm.2020.02.022 [Citations: 27]
  398. Mathematical modeling and numerical simulation of the N-component Cahn-Hilliard model on evolving surfaces

    Liu, Lulu | Huang, Shijie | Xiao, Xufeng | Feng, Xinlong

    Journal of Computational Physics, Vol. 513 (2024), Iss. P.113189

    https://doi.org/10.1016/j.jcp.2024.113189 [Citations: 0]
  399. Numerical approximation of a non-smooth phase-field model for multicomponent incompressible flow

    Baňas, L’ubomír | Nürnberg, Robert

    ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 51 (2017), Iss. 3 P.1089

    https://doi.org/10.1051/m2an/2016048 [Citations: 8]
  400. Turbulent drag reduction in channel flow with viscosity stratified fluids

    Ahmadi, Somayeh | Roccon, Alessio | Zonta, Francesco | Soldati, Alfredo

    Computers & Fluids, Vol. 176 (2018), Iss. P.260

    https://doi.org/10.1016/j.compfluid.2016.11.007 [Citations: 7]
  401. An interfacial profile-preserving approach for phase field modeling of incompressible two-phase flows

    Hao, Haohao | Li, Xiangwei | Jiang, Chenglin | Tan, Huanshu

    International Journal of Multiphase Flow, Vol. 174 (2024), Iss. P.104750

    https://doi.org/10.1016/j.ijmultiphaseflow.2024.104750 [Citations: 0]
  402. An energy-stable finite-difference scheme for the binary fluid-surfactant system

    Gu, Shuting | Zhang, Hui | Zhang, Zhengru

    Journal of Computational Physics, Vol. 270 (2014), Iss. P.416

    https://doi.org/10.1016/j.jcp.2014.03.060 [Citations: 31]
  403. Dimp-Hydro Solver for Direct Numerical Simulation of Fluid Microflows within Pore Space of Core Samples

    Balashov, V. A. | Savenkov, E. B. | Chetverushkin, B. N.

    Mathematical Models and Computer Simulations, Vol. 12 (2020), Iss. 2 P.110

    https://doi.org/10.1134/S2070048220020027 [Citations: 5]
  404. Reduced order methods for the solution of solidification Phase-Field models ⁎ ⁎This work has been funded by the RCUK National Centre for the Sustainable Energy Use in Food Chains (CSEF) (EPSRC grant no. EP/K011820/1).

    López-Quiroga, E.

    IFAC-PapersOnLine, Vol. 51 (2018), Iss. 2 P.637

    https://doi.org/10.1016/j.ifacol.2018.03.108 [Citations: 1]
  405. Solvent mixing and ion partitioning effects in spontaneous charging and electrokinetic flow of immiscible liquid-liquid interface

    Huang, Yunfan | Wang, Moran

    Physical Review Fluids, Vol. 9 (2024), Iss. 10

    https://doi.org/10.1103/PhysRevFluids.9.103701 [Citations: 0]
  406. Multicomponent phase-field model for extremely large partition coefficients

    Welland, Michael J. | Wolf, Dieter | Guyer, Jonathan E.

    Physical Review E, Vol. 89 (2014), Iss. 1

    https://doi.org/10.1103/PhysRevE.89.012409 [Citations: 13]
  407. The stabilized-trigonometric scalar auxiliary variable approach for gradient flows and its efficient schemes

    Yang, Junxiang | Kim, Junseok

    Journal of Engineering Mathematics, Vol. 129 (2021), Iss. 1

    https://doi.org/10.1007/s10665-021-10155-x [Citations: 6]
  408. An unconditionally energy stable second order finite element method for solving the Allen–Cahn equation

    Li, Congying | Huang, Yunqing | Yi, Nianyu

    Journal of Computational and Applied Mathematics, Vol. 353 (2019), Iss. P.38

    https://doi.org/10.1016/j.cam.2018.12.024 [Citations: 30]
  409. Investigation of an Embedded Cooling RF Silicon Interposer for an Ultrahigh Heat Flux GaN TR Array

    Li, Wei | Qian, Wenbing | Zhao, Xiaoliang | Liu, Yuanyang | Wang, Zhenyu | Wang, Wei | Zhang, Xiaobin | Zhao, Yongzhi

    IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 13 (2023), Iss. 2 P.161

    https://doi.org/10.1109/TCPMT.2023.3242235 [Citations: 5]
  410. Inferring topological transitions in pattern-forming processes with self-supervised learning

    Abram, Marcin | Burghardt, Keith | Ver Steeg, Greg | Galstyan, Aram | Dingreville, Remi

    npj Computational Materials, Vol. 8 (2022), Iss. 1

    https://doi.org/10.1038/s41524-022-00889-2 [Citations: 9]
  411. Improved lattice Boltzmann modeling of binary flow based on the conservative Allen-Cahn equation

    Ren, Feng | Song, Baowei | Sukop, Michael C. | Hu, Haibao

    Physical Review E, Vol. 94 (2016), Iss. 2

    https://doi.org/10.1103/PhysRevE.94.023311 [Citations: 86]
  412. Hierarchy of consistent n-component Cahn–Hilliard systems

    Boyer, Franck | Minjeaud, Sebastian

    Mathematical Models and Methods in Applied Sciences, Vol. 24 (2014), Iss. 14 P.2885

    https://doi.org/10.1142/S0218202514500407 [Citations: 48]
  413. Simulation and analysis of coalescence of water droplets on composite insulating surface under DC electric field

    Ndoumbe, J. | Beroual, A. | Imano, A. Moukengue

    IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 22 (2015), Iss. 5 P.2669

    https://doi.org/10.1109/TDEI.2015.004820 [Citations: 16]