Year: 2010
Author: Elaine T. Hale, Wotao Yin, Yin Zhang
Journal of Computational Mathematics, Vol. 28 (2010), Iss. 2 : pp. 170–194
Abstract
Fixed-point continuation (FPC) is an approach, based on operator-splitting and continuation, for solving minimization problems with $\ell_1$-regularization:
We investigate the application of this algorithm to compressed sensing signal recovery, in which $f(x) = \frac{1}{2}\|Ax-b\|_M^2$, $A \in \mathbb{R}^{m \times n}$ and $m \leq n$. In particular, we extend the original algorithm to obtain better practical results, derive appropriate choices for $M$ and $\bar{\mu}$ under a given measurement model, and present numerical results for a variety of compressed sensing problems. The numerical results show that the performance of our algorithm compares favorably with that of several recently proposed algorithms.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/jcm.2009.10-m1007
Journal of Computational Mathematics, Vol. 28 (2010), Iss. 2 : pp. 170–194
Published online: 2010-01
AMS Subject Headings:
Copyright: COPYRIGHT: © Global Science Press
Pages: 25
Keywords: $\ell_1$ regularization Fixed-point algorithm Continuation Compressed sensing Numerical experiments.
Author Details
-
The In-Crowd Algorithm for Fast Basis Pursuit Denoising
Gill, Patrick R. | Wang, Albert | Molnar, AlyoshaIEEE Transactions on Signal Processing, Vol. 59 (2011), Iss. 10 P.4595
https://doi.org/10.1109/TSP.2011.2161292 [Citations: 117] -
Analog sparse approximation for compressed sensing recovery
Rozell, Christopher J. | Garrigues, Pierre2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers, (2010), P.822
https://doi.org/10.1109/ACSSC.2010.5757680 [Citations: 3] -
Multiresolution Parameter Choice Method for Total Variation Regularized Tomography
Niinimäki, Kati | Lassas, Matti | Hämäläinen, Keijo | Kallonen, Aki | Kolehmainen, Ville | Niemi, Esa | Siltanen, SamuliSIAM Journal on Imaging Sciences, Vol. 9 (2016), Iss. 3 P.938
https://doi.org/10.1137/15M1034076 [Citations: 15] -
Simultaneous reconstruction of undersampled multichannel signals with a decayed and time-delayed common component
Shiraki, Yoshifumi | Kamamoto, Yutaka | Moriya, Takehiro2013 IEEE International Conference on Acoustics, Speech and Signal Processing, (2013), P.3816
https://doi.org/10.1109/ICASSP.2013.6638372 [Citations: 0] -
Strong Convergence of Hybrid Algorithm for Asymptotically Nonexpansive Mappings in Hilbert Spaces
Su, Juguo | Tang, Yuchao | Liu, Liwei | Chen, RudongJournal of Applied Mathematics, Vol. 2012 (2012), Iss. 1
https://doi.org/10.1155/2012/170540 [Citations: 0] -
Inexact accelerated augmented Lagrangian methods
Kang, Myeongmin | Kang, Myungjoo | Jung, MiyounComputational Optimization and Applications, Vol. 62 (2015), Iss. 2 P.373
https://doi.org/10.1007/s10589-015-9742-8 [Citations: 26] -
Convergence Theorem of Hybrid Iterative Algorithm for Equilibrium Problems and Fixed Point Problems of Finite Families of Uniformly Asymptotically Nonexpansive Semigroups
Liu, Hongbo | Li, YiAdvances in Pure Mathematics, Vol. 04 (2014), Iss. 06 P.244
https://doi.org/10.4236/apm.2014.46033 [Citations: 0] -
Scale Space and Variational Methods in Computer Vision
An Efficient Line Search for Sparse Reconstruction
Shabani, Shima | Breuß, Michael2023
https://doi.org/10.1007/978-3-031-31975-4_36 [Citations: 0] -
A mixed ℓ1 regularization approach for sparse simultaneous approximation of parameterized PDEs
Dexter, Nick | Tran, Hoang | Webster, ClaytonESAIM: Mathematical Modelling and Numerical Analysis, Vol. 53 (2019), Iss. 6 P.2025
https://doi.org/10.1051/m2an/2019048 [Citations: 8] -
Collaborative Multi-Sensor Classification Via Sparsity-Based Representation
Dao, Minh | Nguyen, Nam H. | Nasrabadi, Nasser M. | Tran, Trac D.IEEE Transactions on Signal Processing, Vol. 64 (2016), Iss. 9 P.2400
https://doi.org/10.1109/TSP.2016.2521605 [Citations: 21] -
Sample Approximation-Based Deflation Approaches for Chance SINR Constrained Joint Power and Admission Control
Liu, Ya-Feng | Hong, Mingyi | Song, EnbinIEEE Transactions on Wireless Communications, Vol. (2016), Iss. P.1
https://doi.org/10.1109/TWC.2016.2542240 [Citations: 12] -
A box constrained gradient projection algorithm for compressed sensing
Broughton, R.L. | Coope, I.D. | Renaud, P.F. | Tappenden, R.E.H.Signal Processing, Vol. 91 (2011), Iss. 8 P.1985
https://doi.org/10.1016/j.sigpro.2011.03.003 [Citations: 7] -
Sparse Approximation via Penalty Decomposition Methods
Lu, Zhaosong | Zhang, YongSIAM Journal on Optimization, Vol. 23 (2013), Iss. 4 P.2448
https://doi.org/10.1137/100808071 [Citations: 131] -
A diagonally scaled Newton-type proximal method for minimization of the models with nonsmooth composite cost functions
Aminifard, Zohre | Babaie–Kafaki, SamanComputational and Applied Mathematics, Vol. 42 (2023), Iss. 8
https://doi.org/10.1007/s40314-023-02494-5 [Citations: 0] -
A smoothing SQP framework for a class of composite $$L_q$$ L q minimization over polyhedron
Liu, Ya-Feng | Ma, Shiqian | Dai, Yu-Hong | Zhang, ShuzhongMathematical Programming, Vol. 158 (2016), Iss. 1-2 P.467
https://doi.org/10.1007/s10107-015-0939-5 [Citations: 29] -
Large sparse signal recovery by conjugate gradient algorithm based on smoothing technique
Zhu, Hong | Xiao, Yunhai | Wu, Soon-YiComputers & Mathematics with Applications, Vol. 66 (2013), Iss. 1 P.24
https://doi.org/10.1016/j.camwa.2013.04.022 [Citations: 22] -
A new generalized shrinkage conjugate gradient method for sparse recovery
Esmaeili, Hamid | Shabani, Shima | Kimiaei, MortezaCalcolo, Vol. 56 (2019), Iss. 1
https://doi.org/10.1007/s10092-018-0296-x [Citations: 25] -
An approximate Newton-type proximal method using symmetric rank-one updating formula for minimizing the nonsmooth composite functions
Aminifard, Zohre | Babaie-Kafaki, SamanOptimization Methods and Software, Vol. 38 (2023), Iss. 3 P.529
https://doi.org/10.1080/10556788.2022.2142587 [Citations: 1] -
Modified conjugate gradient method for solving sparse recovery problem with nonconvex penalty
Aminifard, Zohre | Hosseini, Alireza | Babaie-Kafaki, SamanSignal Processing, Vol. 193 (2022), Iss. P.108424
https://doi.org/10.1016/j.sigpro.2021.108424 [Citations: 11] -
Time and Location Aware Mobile Data Pricing
Ma, Qian | Liu, Ya-Feng | Huang, JianweiIEEE Transactions on Mobile Computing, Vol. 15 (2016), Iss. 10 P.2599
https://doi.org/10.1109/TMC.2015.2503763 [Citations: 29] -
A Barzilai-Borwein type method for minimizing composite functions
Huang, Yakui | Liu, HongweiNumerical Algorithms, Vol. 69 (2015), Iss. 4 P.819
https://doi.org/10.1007/s11075-014-9927-8 [Citations: 11] -
Signal reconstruction by conjugate gradient algorithm based on smoothing $$l_1$$-norm
Wu, Caiying | Zhan, Jiaming | Lu, Yue | Chen, Jein-ShanCalcolo, Vol. 56 (2019), Iss. 4
https://doi.org/10.1007/s10092-019-0340-5 [Citations: 8] -
A new class of conjugate gradient methods for unconstrained smooth optimization and absolute value equations
Rahpeymaii, Farzad | Amini, Keyvan | Allahviranloo, Tofigh | Malkhalifeh, Mohsen RostamyCalcolo, Vol. 56 (2019), Iss. 1
https://doi.org/10.1007/s10092-018-0298-8 [Citations: 5] -
Analysis and Generalizations of the Linearized Bregman Method
Yin, Wotao
SIAM Journal on Imaging Sciences, Vol. 3 (2010), Iss. 4 P.856
https://doi.org/10.1137/090760350 [Citations: 127] -
Randomized Block Proximal Damped Newton Method for Composite Self-Concordant Minimization
Lu, Zhaosong
SIAM Journal on Optimization, Vol. 27 (2017), Iss. 3 P.1910
https://doi.org/10.1137/16M1082767 [Citations: 4] -
A Fast Algorithm for Sparse Reconstruction Based on Shrinkage, Subspace Optimization, and Continuation
Wen, Zaiwen | Yin, Wotao | Goldfarb, Donald | Zhang, YinSIAM Journal on Scientific Computing, Vol. 32 (2010), Iss. 4 P.1832
https://doi.org/10.1137/090747695 [Citations: 141] -
Iterative reweighted minimization methods for $$l_p$$ l p regularized unconstrained nonlinear programming
Lu, Zhaosong
Mathematical Programming, Vol. 147 (2014), Iss. 1-2 P.277
https://doi.org/10.1007/s10107-013-0722-4 [Citations: 84] -
A Mathematical Introduction to Compressive Sensing
Algorithms for ℓ1-Minimization
Foucart, Simon | Rauhut, Holger2013
https://doi.org/10.1007/978-0-8176-4948-7_15 [Citations: 0] -
Generalized Conjugate Gradient Methods for ℓ1 Regularized Convex Quadratic Programming with Finite Convergence
Lu, Zhaosong | Chen, XiaojunMathematics of Operations Research, Vol. 43 (2018), Iss. 1 P.275
https://doi.org/10.1287/moor.2017.0865 [Citations: 5] -
Accelerated Bregman Method for Linearly Constrained $$\ell _1$$ – $$\ell _2$$ Minimization
Kang, Myeongmin | Yun, Sangwoon | Woo, Hyenkyun | Kang, MyungjooJournal of Scientific Computing, Vol. 56 (2013), Iss. 3 P.515
https://doi.org/10.1007/s10915-013-9686-z [Citations: 20] -
Alternating Direction Algorithms for $\ell_1$-Problems in Compressive Sensing
Yang, Junfeng | Zhang, YinSIAM Journal on Scientific Computing, Vol. 33 (2011), Iss. 1 P.250
https://doi.org/10.1137/090777761 [Citations: 842] -
Combining line search and trust-region methods forℓ1-minimization
Esmaeili, Hamid | Rostami, Majid | Kimiaei, MortezaInternational Journal of Computer Mathematics, Vol. 95 (2018), Iss. 10 P.1950
https://doi.org/10.1080/00207160.2017.1346241 [Citations: 4] -
Golden Ratio Primal-Dual Algorithm with Linesearch
Chang, Xiao-Kai | Yang, Junfeng | Zhang, HongchaoSIAM Journal on Optimization, Vol. 32 (2022), Iss. 3 P.1584
https://doi.org/10.1137/21M1420319 [Citations: 9] -
Nonmonotone variable metric Barzilai-Borwein method for composite minimization problem
Guo, Xiao | Xu, Chuanpei | Zhu, Zhibin | Zhang, BenxinAIMS Mathematics, Vol. 9 (2024), Iss. 6 P.16335
https://doi.org/10.3934/math.2024791 [Citations: 0] -
Sparse microwave imaging: Principles and applications
Zhang, BingChen | Hong, Wen | Wu, YiRongScience China Information Sciences, Vol. 55 (2012), Iss. 8 P.1722
https://doi.org/10.1007/s11432-012-4633-4 [Citations: 132] -
Accelerated iterative hard thresholding algorithm for $$l_0$$ regularized regression problem
Wu, Fan | Bian, WeiJournal of Global Optimization, Vol. 76 (2020), Iss. 4 P.819
https://doi.org/10.1007/s10898-019-00826-6 [Citations: 7] -
Strong Convergence by a Hybrid Algorithm for Finding a Common Fixed Point of Lipschitz Pseudocontraction and Strict Pseudocontraction in Hilbert Spaces
Ungchittrakool, Kasamsuk | Wong, P. J. Y.Abstract and Applied Analysis, Vol. 2011 (2011), Iss. 1
https://doi.org/10.1155/2011/530683 [Citations: 2] -
Iteratively reweighted sparse reconstruction in impulsive noise
He, Zhen-Qing | Shi, Zhi-Ping | Huang, Lei | So, H. C.2015 IEEE China Summit and International Conference on Signal and Information Processing (ChinaSIP), (2015), P.741
https://doi.org/10.1109/ChinaSIP.2015.7230503 [Citations: 1] -
Strong convergence theorem for pseudo-contractive mappings in Hilbert spaces
Tang, Yu-Chao | Peng, Ji-Gen | Liu, Li-WeiNonlinear Analysis: Theory, Methods & Applications, Vol. 74 (2011), Iss. 2 P.380
https://doi.org/10.1016/j.na.2010.08.048 [Citations: 16] -
SCIHTBB: Sparsity constrained iterative hard thresholding with Barzilai–Borwein step size
Xie, Zhipeng | Chen, SongcanNeurocomputing, Vol. 74 (2011), Iss. 17 P.3663
https://doi.org/10.1016/j.neucom.2011.07.003 [Citations: 3] -
An iteratively approximated gradient projection algorithm for sparse signal reconstruction
Liu, Zhongyi | Wei, Zhihui | Sun, WenyuApplied Mathematics and Computation, Vol. 228 (2014), Iss. P.454
https://doi.org/10.1016/j.amc.2013.10.063 [Citations: 5] -
Proximity point algorithm for low-rank matrix recovery from sparse noise corrupted data
Zhu, Wei | Shu, Shi | Cheng, Li-zhiApplied Mathematics and Mechanics, Vol. 35 (2014), Iss. 2 P.259
https://doi.org/10.1007/s10483-014-1788-6 [Citations: 4] -
Hybrid method for equilibrium problems and fixed point problems of finite families of nonexpansive semigroups
Eslamian, Mohammad
Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, Vol. 107 (2013), Iss. 2 P.299
https://doi.org/10.1007/s13398-012-0069-3 [Citations: 13] -
An Exp Model with Spatially Adaptive Regularization Parameters for Multiplicative Noise Removal
Na, Hanwool | Kang, Myeongmin | Jung, Miyoun | Kang, MyungjooJournal of Scientific Computing, Vol. 75 (2018), Iss. 1 P.478
https://doi.org/10.1007/s10915-017-0550-4 [Citations: 6] -
A Barzilai–Borwein-Like Iterative Half Thresholding Algorithm for the $$L_{1/2}$$ L 1 / 2 Regularized Problem
Wu, Lei | Sun, Zhe | Li, Dong-HuiJournal of Scientific Computing, Vol. 67 (2016), Iss. 2 P.581
https://doi.org/10.1007/s10915-015-0094-4 [Citations: 8]