On the General Algebraic Inverse Eigenvalue Problems

On the General Algebraic Inverse Eigenvalue Problems

Year:    2004

Author:    Yuhai Zhang

Journal of Computational Mathematics, Vol. 22 (2004), Iss. 4 : pp. 567–580

Abstract

A number of new results on sufficient conditions for the solvability and numerical algorithms of the following general algebraic inverse eigenvalue problem are obtained: Given $n+1$ real $n\times n$ matrices $A=(a_{ij}),A_k=(a_{ij}^{(k)})(k=1,2,\cdots,n)$ and $n$ distinct real numbers $\lambda_1,\lambda_2,\cdots,\lambda_n,$ find $n$ real number $c_1,c_2,\cdots,c_n$ such that the matrix $A(c)=A+\sum\limits_{k=1}^{n}c_k A_k$ has eigenvalues $\lambda_1,\lambda_2,\cdots,\lambda_n.$

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/2004-JCM-10306

Journal of Computational Mathematics, Vol. 22 (2004), Iss. 4 : pp. 567–580

Published online:    2004-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    14

Keywords:    Linear algebra Eigenvalue problem Inverse problem.

Author Details

Yuhai Zhang