Year: 2004
Author: Yuhai Zhang
Journal of Computational Mathematics, Vol. 22 (2004), Iss. 4 : pp. 567–580
Abstract
A number of new results on sufficient conditions for the solvability and numerical algorithms of the following general algebraic inverse eigenvalue problem are obtained: Given $n+1$ real $n\times n$ matrices $A=(a_{ij}),A_k=(a_{ij}^{(k)})(k=1,2,\cdots,n)$ and $n$ distinct real numbers $\lambda_1,\lambda_2,\cdots,\lambda_n,$ find $n$ real number $c_1,c_2,\cdots,c_n$ such that the matrix $A(c)=A+\sum\limits_{k=1}^{n}c_k A_k$ has eigenvalues $\lambda_1,\lambda_2,\cdots,\lambda_n.$
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/2004-JCM-10306
Journal of Computational Mathematics, Vol. 22 (2004), Iss. 4 : pp. 567–580
Published online: 2004-01
AMS Subject Headings:
Copyright: COPYRIGHT: © Global Science Press
Pages: 14
Keywords: Linear algebra Eigenvalue problem Inverse problem.