Oscillation Theory of $h$-Fractional Difference Equations

Oscillation Theory of $h$-Fractional Difference Equations

Year:    2021

Author:    Fanfan Li, Zhenlai Han

Journal of Nonlinear Modeling and Analysis, Vol. 3 (2021), Iss. 1 : pp. 105–113

Abstract

In this paper, we initiate the oscillation theory for $h$-fractional difference equations of the form

image.png

where $_a∆^α_h$ is the Riemann-Liouville $h$-fractional difference of order $α$, $\mathbb{T}^a_h :$={$a + kh, k ∈ \mathbb{Z}^+ $∪{0}}, and $a ≥ 0$, $h > 0$. We study the oscillation of $h$-fractional difference equations with Riemann-Liouville derivative, and obtain some sufficient conditions for oscillation of every solution. Finally, we give an example to illustrate our main results.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.12150/jnma.2021.105

Journal of Nonlinear Modeling and Analysis, Vol. 3 (2021), Iss. 1 : pp. 105–113

Published online:    2021-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    9

Keywords:    $h$-deference equations Oscillation Fractional.

Author Details

Fanfan Li

Zhenlai Han