Local Existence of Strong Solutions to the Generalized MHD Equations

Year:    2024

Author:    Liangbing Jin, Xinru Cheng

Journal of Nonlinear Modeling and Analysis, Vol. 6 (2024), Iss. 1 : pp. 184–193

Abstract

This paper devotes to consider the local existence of the strong solutions to the generalized MHD system with fractional dissipative terms $Λ^{2α}u$ for the velocity field and $Λ^{2α}b$ for the magnetic field, respectively. We construct the approximate solutions by the Fourier truncation method, and use energy method to obtain the local existence of strong solutions in $H^s (\mathbb{R}^n)$ $(s > max \{\frac{n}{2} + 1 − 2α, 0\})$ for any $α ≥ 0.$

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.12150/jnma.2024.184

Journal of Nonlinear Modeling and Analysis, Vol. 6 (2024), Iss. 1 : pp. 184–193

Published online:    2024-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    10

Keywords:    Generalized MHD system local existence Fourier truncation.

Author Details

Liangbing Jin

Xinru Cheng