Year: 2024
Author: Le Thi Hong Dzung, Le Van Hien
Journal of Nonlinear Modeling and Analysis, Vol. 6 (2024), Iss. 2 : pp. 453–475
Abstract
In this paper, we consider a class of nonlinear differential equations with delays described by conformable fractional derivative. This type of differential equations can be used to describe dynamics of various practical models including biological and artificial neural networks with heterogeneous time-varying delays. By novel comparison techniques via fractional differential and integral inequalities, we prove under assumptions involving the order-preserving property of nonlinear vector fields that, with nonnegative initial states and inputs, the system state trajectories are always nonnegative for all time. This feature, called positivity, induces a special character, namely the monotonicity of the system. We then derive tractable conditions in terms of linear programming and prove, by utilizing the Brouwer’s fixed point theorem and comparisons induced by the monotonicity, that the system possesses a unique positive equilibrium point which attracts exponentially all state trajectories. An application to the exponential stability of fractional linear time-delay systems is also discussed. Numerical examples with simulations are given to illustrate the theoretical results.
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.12150/jnma.2024.453
Journal of Nonlinear Modeling and Analysis, Vol. 6 (2024), Iss. 2 : pp. 453–475
Published online: 2024-01
AMS Subject Headings:
Copyright: COPYRIGHT: © Global Science Press
Pages: 23
Keywords: Conformable derivative time-delay systems BAM neural networks positive equilibrium M-matrix.