Limit Cycle Bifurcations of a Cubic Polynomial System via Melnikov Analysis

Year:    2024

Author:    Peixing Yang, Jiang Yu

Journal of Nonlinear Modeling and Analysis, Vol. 6 (2024), Iss. 3 : pp. 683–692

Abstract

In this paper, a linear perturbation up to any order in $\epsilon$ for a cubic center with a multiple line of critical points is considered. By the algorithm of any order Melnikov function, the sharp upper bound of the number of limit cycles is 2.

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.12150/jnma.2024.683

Journal of Nonlinear Modeling and Analysis, Vol. 6 (2024), Iss. 3 : pp. 683–692

Published online:    2024-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    10

Keywords:    Melnikov functions bifurcations limit cycles.

Author Details

Peixing Yang

Jiang Yu