Year: 2024
Author: Mengjiao Zhao, Chengbo Zhai
Journal of Nonlinear Modeling and Analysis, Vol. 6 (2024), Iss. 3 : pp. 746–758
Abstract
This paper discusses a new coupled system of Riemann-Liouville fractional differential equations, in which the nonlinear terms include the Riemann-Liouville fractional integrals and the boundary value problems involve three-points. We seek also for the existence and uniqueness of solutions for this new system. We first get some useful properties of the Green’s function generated by the system, and then we apply a fixed point theorem of increasing $φ$-$(h, e)$-concave operators to this new coupled system. Finally, we gain the existence and uniqueness results of the solution for this problem. In the end, a concrete example is structured to illustrate the main result.
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.12150/jnma.2024.746
Journal of Nonlinear Modeling and Analysis, Vol. 6 (2024), Iss. 3 : pp. 746–758
Published online: 2024-01
AMS Subject Headings:
Copyright: COPYRIGHT: © Global Science Press
Pages: 13
Keywords: Existence and uniqueness coupled system of fractional differential equations fixed point theorem $φ$-$(h e)$-concave operators.