Loading [MathJax]/jax/output/HTML-CSS/config.js
Journals
Resources
About Us
Open Access
Go to previous page

Learning a Sparse Representation of Barron Functions with the Inverse Scale Space Flow

Year:    2025

Author:    Tjeerd Jan Heeringa, Tim Roith, Christoph Brune, Martin Burger

Journal of Machine Learning, Vol. 4 (2025), Iss. 1 : pp. 48–88

Abstract

This paper presents a method for finding a sparse representation of Barron functions. Specifically, given an $L^2$ function $f,$ the inverse scale space flow is used to find a sparse measure $\mu$ minimising the $L^2$ loss between the Barron function associated to the measure $\mu$ and the function $f.$ The convergence properties of this method are analysed in an ideal setting and in the cases of measurement noise and sampling bias. In an ideal setting the objective decreases strictly monotone in time to a minimizer with $\mathcal{O}(1/t),$ and in the case of measurement noise or sampling bias the optimum is achieved up to a multiplicative or additive constant. This convergence is preserved on discretization of the parameter space, and the minimizers on increasingly fine discretizations converge to the optimum on the full parameter space.

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jml.240123

Journal of Machine Learning, Vol. 4 (2025), Iss. 1 : pp. 48–88

Published online:    2025-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    41

Keywords:    Barron Space Bregman Iterations Sparse Neural Networks Inverse Scale Space Optimization.

Author Details

Tjeerd Jan Heeringa Email

Tim Roith Email

Christoph Brune Email

Martin Burger Email