Nodal Solutions of the Brezis-Nirenberg Problem in Dimension 6
Year: 2022
Author: Angela Pistoia, Giusi Vaira
Analysis in Theory and Applications, Vol. 38 (2022), Iss. 1 : pp. 1–25
Abstract
We show that the classical Brezis-Nirenberg problem −Δu=u|u|+λu in Ω,u=0 on ∂Ω, when Ω is a bounded domain in R6 has a sign-changing solution which blows-up at a point in Ω as λ approaches a suitable value λ0>0.
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/ata.OA-2020-0044
Analysis in Theory and Applications, Vol. 38 (2022), Iss. 1 : pp. 1–25
Published online: 2022-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 25
Keywords: Sign-changing solutions blow-up phenomenon Lyapunov-Schmidt reduction Transversality theorem.
Author Details
Angela Pistoia Email
Giusi Vaira Email
-
Non-degeneracy of the multi-bump solutions to the Brezis-Nirenberg problem
Chen, Haixia | Wang, Chunhua | Xie, Huafei | Zhou, YangAnnali di Matematica Pura ed Applicata (1923 -), Vol. 203 (2024), Iss. 3 P.1115
https://doi.org/10.1007/s10231-023-01395-y [Citations: 0] -
Nodal cluster solutions for the Brezis–Nirenberg problem in dimensions N≥7
Musso, Monica | Rocci, Serena | Vaira, GiusiCalculus of Variations and Partial Differential Equations, Vol. 63 (2024), Iss. 5
https://doi.org/10.1007/s00526-024-02727-3 [Citations: 0]