Singular Solutions to Monge-Ampère Equation

Year:    2022

Author:    Luis A. Caffarelli, Yu Yuan

Analysis in Theory and Applications, Vol. 38 (2022), Iss. 2 : pp. 121–127

Abstract

We construct merely Lipschitz and $C^{1,α}$ with rational $α ∈ (0, 1 − 2/n]$ viscosity solutions to the Monge-Ampère equation with constant right hand side.

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/ata.OA-0023

Analysis in Theory and Applications, Vol. 38 (2022), Iss. 2 : pp. 121–127

Published online:    2022-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    7

Keywords:    Monge-Ampère equation.

Author Details

Luis A. Caffarelli

Yu Yuan

  1. Removable singularities in the boundary for quasilinear elliptic equations

    Apaza, Juan A.

    de Souza, Manassés

    Nonlinear Differential Equations and Applications NoDEA, Vol. 31 (2024), Iss. 4

    https://doi.org/10.1007/s00030-024-00945-4 [Citations: 0]